QuantFactory/Crispy_Crab_4B-GGUF
This is quantized version of FourOhFour/Crispy_Crab_4B created using llama.cpp
Original Model Card
See axolotl config
axolotl version: 0.4.1
base_model: jeiku/instructered4B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
hub_model_id: jeiku/TheBest4B
hub_strategy: "all_checkpoints"
push_dataset_to_hub:
hf_use_auth_token: true
datasets:
- path: FourOhFour/RP_Phase
type: sharegpt
conversation: chatml
chat_template: chatml
shuffle_merged_datasets: true
val_set_size: 0.0025
output_dir: ./outputs/out
adapter:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
wandb_project: EXP4B
wandb_entity:
wandb_watch:
wandb_name: EXP4B
wandb_log_model:
gradient_accumulation_steps: 12
micro_batch_size: 3
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00001
weight_decay: 0.05
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.1
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 2
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
fsdp:
fsdp_config:
special_tokens:
pad_token: <|finetune_right_pad_id|>
TheBest4B
This model is a fine-tuned version of jeiku/instructered4B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.1148
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 12
- total_train_batch_size: 72
- total_eval_batch_size: 6
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 22
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.8805 | 0.0089 | 1 | 2.7425 |
1.7985 | 0.2491 | 28 | 2.2908 |
1.727 | 0.4981 | 56 | 2.1943 |
1.7429 | 0.7472 | 84 | 2.1665 |
1.6867 | 0.9963 | 112 | 2.1309 |
1.6463 | 1.2461 | 140 | 2.1267 |
1.593 | 1.4959 | 168 | 2.1148 |
1.604 | 1.7457 | 196 | 2.1129 |
1.6085 | 1.9955 | 224 | 2.1148 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.20.0
- Downloads last month
- 460
Model tree for QuantFactory/Crispy_Crab_4B-GGUF
Finetuned
jeiku/completion4B
Finetuned
jeiku/instructered4B