Edit model card

wav2vec2-xlsr-fi-lm-1B

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the common voice train/dev/other datasets. It achieves the following results on the evaluation set without language model:

  • Loss: 0.1853
  • Wer: 0.2205

With language model:

  • Wer: 0.1026

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.8158 0.67 400 0.4835 0.6310
0.5679 1.33 800 0.4806 0.5538
0.6055 2.0 1200 0.3888 0.5083
0.5353 2.67 1600 0.3258 0.4365
0.4883 3.33 2000 0.3313 0.4204
0.4513 4.0 2400 0.2924 0.3904
0.3753 4.67 2800 0.2593 0.3608
0.3478 5.33 3200 0.2832 0.3551
0.3796 6.0 3600 0.2495 0.3402
0.2556 6.67 4000 0.2342 0.3106
0.229 7.33 4400 0.2181 0.2812
0.205 8.0 4800 0.2041 0.2523
0.1654 8.67 5200 0.2015 0.2416
0.152 9.33 5600 0.1942 0.2294
0.1569 10.0 6000 0.1853 0.2205

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.17.1.dev0
  • Tokenizers 0.11.0
Downloads last month
49
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.