REILX's picture
Update README.md
b722abe verified
metadata
license: llama3
datasets:
  - REILX/extracted_tagengo_gpt4
  - TigerResearch/sft_zh
  - alexl83/AlpacaDataCleaned
  - LooksJuicy/ruozhiba
  - silk-road/alpaca-data-gpt4-chinese
  - databricks/databricks-dolly-15k
  - microsoft/orca-math-word-problems-200k
  - Sao10K/Claude-3-Opus-Instruct-5K
language:
  - zh
  - en
tags:
  - text-generation-inference
  - llama
  - chat
  - sft
  - lora

数据集

使用以下8个数据集 image/png 对Llama-3-8B-Instruct进行微调。

基础模型:

训练工具

https://github.com/hiyouga/LLaMA-Factory

测评方式:

使用opencompass(https://github.com/open-compass/OpenCompass/ ), 测试工具基于CEval和MMLU对微调之后的模型和原始模型进行测试。
测试模型分别为:

  • Llama-3-8B
  • Llama-3-8B-Instruct
  • Llama-3-8B-Instruct-750Mb-lora, 使用8DataSets数据集对Llama-3-8B-Instruct模型进行sft方式lora微调

测试机器

8*A800

8DataSets数据集:

大约750Mb的微调数据集

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 1.0