Edit model card

VogagenRelation

This model is a fine-tuned version of camembert-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6952
  • Accuracy: 0.5
  • Precision: 0.5
  • Recall: 1.0
  • F1: 0.6667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 0.21 100 0.6928 0.5 0.5 1.0 0.6667
No log 0.42 200 0.7024 0.5 0.0 0.0 0.0
No log 0.62 300 0.7194 0.5 0.0 0.0 0.0
No log 0.83 400 0.6944 0.4992 0.0 0.0 0.0
0.6974 1.04 500 0.6973 0.5 0.5 1.0 0.6667
0.6974 1.25 600 0.7078 0.5 0.5 1.0 0.6667
0.6974 1.46 700 0.6945 0.5 0.5 1.0 0.6667
0.6974 1.66 800 0.6942 0.5 0.5 1.0 0.6667
0.6974 1.87 900 0.6945 0.5 0.5 1.0 0.6667
0.6962 2.08 1000 0.6932 0.4992 0.4 0.0031 0.0062
0.6962 2.29 1100 0.6952 0.5 0.5 1.0 0.6667

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
43
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for RKessler/VogagenRelation

Finetuned
(94)
this model