RMWeerasinghe's picture
Update README.md
7f28205 verified
|
raw
history blame
3.47 kB
metadata
license: apache-2.0
base_model: RMWeerasinghe/long-t5-tglobal-base-finetuned-govReport-4096
tags:
  - summarization
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: long-t5-tglobal-base-boardpapers-4096
    results: []
pipeline_tag: summarization

long-t5-tglobal-base-boardpapers-4096

This model is a fine-tuned version of RMWeerasinghe/long-t5-tglobal-base-finetuned-govReport-4096 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5617
  • Rouge1: 0.0743
  • Rouge2: 0.0398
  • Rougel: 0.0589
  • Rougelsum: 0.0703

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
No log 0.67 1 0.6654 0.0514 0.0197 0.0386 0.0477
No log 2.0 3 0.6378 0.0667 0.0309 0.0512 0.0596
No log 2.67 4 0.6293 0.0646 0.0274 0.0515 0.0619
No log 4.0 6 0.6128 0.0706 0.0377 0.0566 0.067
No log 4.67 7 0.6049 0.0706 0.0377 0.0566 0.067
No log 6.0 9 0.5935 0.0706 0.0377 0.0566 0.067
No log 6.67 10 0.5891 0.0718 0.0385 0.0578 0.067
No log 8.0 12 0.5815 0.0743 0.0398 0.0589 0.0703
No log 8.67 13 0.5785 0.0743 0.0398 0.0589 0.0703
No log 10.0 15 0.5742 0.0743 0.0398 0.0589 0.0703
No log 10.67 16 0.5724 0.0743 0.0398 0.0589 0.0703
No log 12.0 18 0.5694 0.0743 0.0398 0.0589 0.0703
No log 12.67 19 0.5681 0.0743 0.0398 0.0589 0.0703
0.7929 14.0 21 0.5661 0.0743 0.0398 0.0589 0.0703
0.7929 14.67 22 0.5652 0.0743 0.0398 0.0589 0.0703
0.7929 16.0 24 0.5636 0.0743 0.0398 0.0589 0.0703
0.7929 16.67 25 0.5630 0.0743 0.0398 0.0589 0.0703
0.7929 18.0 27 0.5621 0.0743 0.0398 0.0589 0.0703
0.7929 18.67 28 0.5619 0.0743 0.0398 0.0589 0.0703
0.7929 20.0 30 0.5617 0.0743 0.0398 0.0589 0.0703

Framework versions

  • Transformers 4.37.0
  • Pytorch 2.1.2
  • Datasets 2.17.0
  • Tokenizers 0.15.1