Edit model card

layoutlmv3-finetuned-invoice

This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0558
  • Precision: 0.9435
  • Recall: 0.9612
  • F1: 0.9523
  • Accuracy: 0.9858

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.3195 100 0.0961 0.9121 0.9134 0.9128 0.9752
No log 0.6390 200 0.0772 0.9120 0.9396 0.9256 0.9780
No log 0.9585 300 0.0707 0.9272 0.9509 0.9389 0.9822
No log 1.2780 400 0.0638 0.9202 0.9602 0.9398 0.9819
0.1131 1.5974 500 0.0631 0.9270 0.9582 0.9423 0.9829
0.1131 1.9169 600 0.0561 0.9331 0.9615 0.9471 0.9843
0.1131 2.2364 700 0.0651 0.9141 0.9720 0.9421 0.9824
0.1131 2.5559 800 0.0537 0.9515 0.9556 0.9535 0.9862
0.1131 2.8754 900 0.0556 0.9467 0.9582 0.9524 0.9860
0.0379 3.1949 1000 0.0558 0.9435 0.9612 0.9523 0.9858

Framework versions

  • Transformers 4.46.0.dev0
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
138
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Rahmaa33/layoutlmv3-finetuned-invoice

Finetuned
(212)
this model