metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: Action_model
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7619047619047619
Action_model
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.2147
- Accuracy: 0.7619
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.1624 | 0.16 | 100 | 1.0534 | 0.7638 |
0.2926 | 0.32 | 200 | 1.3484 | 0.6867 |
0.159 | 0.48 | 300 | 0.9484 | 0.7724 |
0.2145 | 0.64 | 400 | 1.0014 | 0.7476 |
0.1889 | 0.8 | 500 | 1.0321 | 0.7457 |
0.3064 | 0.96 | 600 | 1.0795 | 0.7314 |
0.2195 | 1.11 | 700 | 0.9886 | 0.7629 |
0.2982 | 1.27 | 800 | 1.0292 | 0.7590 |
0.2477 | 1.43 | 900 | 1.2391 | 0.7248 |
0.3076 | 1.59 | 1000 | 1.1326 | 0.7324 |
0.1863 | 1.75 | 1100 | 1.2596 | 0.7048 |
0.2577 | 1.91 | 1200 | 1.0649 | 0.7610 |
0.1491 | 2.07 | 1300 | 1.1044 | 0.7562 |
0.2635 | 2.23 | 1400 | 1.1965 | 0.7448 |
0.2597 | 2.39 | 1500 | 1.2241 | 0.7429 |
0.2468 | 2.55 | 1600 | 1.1452 | 0.7390 |
0.216 | 2.71 | 1700 | 1.2419 | 0.7276 |
0.1971 | 2.87 | 1800 | 1.1883 | 0.7362 |
0.2071 | 3.03 | 1900 | 1.4659 | 0.6952 |
0.1535 | 3.18 | 2000 | 1.0239 | 0.7724 |
0.1842 | 3.34 | 2100 | 1.1967 | 0.7390 |
0.2087 | 3.5 | 2200 | 1.1403 | 0.7467 |
0.1658 | 3.66 | 2300 | 1.2901 | 0.7343 |
0.1159 | 3.82 | 2400 | 1.1826 | 0.7438 |
0.1498 | 3.98 | 2500 | 1.2627 | 0.7419 |
0.135 | 4.14 | 2600 | 1.1383 | 0.76 |
0.1492 | 4.3 | 2700 | 1.2310 | 0.7343 |
0.0982 | 4.46 | 2800 | 1.4144 | 0.7105 |
0.1256 | 4.62 | 2900 | 1.3513 | 0.7171 |
0.1544 | 4.78 | 3000 | 1.4280 | 0.7019 |
0.0858 | 4.94 | 3100 | 1.2231 | 0.7429 |
0.1049 | 5.1 | 3200 | 1.2775 | 0.7352 |
0.1361 | 5.25 | 3300 | 1.2840 | 0.7429 |
0.1505 | 5.41 | 3400 | 1.3373 | 0.7390 |
0.1244 | 5.57 | 3500 | 1.2959 | 0.7438 |
0.1114 | 5.73 | 3600 | 1.3181 | 0.7381 |
0.0851 | 5.89 | 3700 | 1.3288 | 0.7457 |
0.0799 | 6.05 | 3800 | 1.1859 | 0.76 |
0.1331 | 6.21 | 3900 | 1.2544 | 0.7371 |
0.121 | 6.37 | 4000 | 1.2186 | 0.7533 |
0.1276 | 6.53 | 4100 | 1.2964 | 0.7324 |
0.1194 | 6.69 | 4200 | 1.1907 | 0.7590 |
0.1649 | 6.85 | 4300 | 1.4679 | 0.7105 |
0.0558 | 7.01 | 4400 | 1.2028 | 0.7533 |
0.0687 | 7.17 | 4500 | 1.3242 | 0.7381 |
0.1419 | 7.32 | 4600 | 1.2328 | 0.76 |
0.0901 | 7.48 | 4700 | 1.1861 | 0.7676 |
0.1181 | 7.64 | 4800 | 1.4031 | 0.7352 |
0.1272 | 7.8 | 4900 | 1.3608 | 0.7438 |
0.0979 | 7.96 | 5000 | 1.3098 | 0.7495 |
0.0805 | 8.12 | 5100 | 1.2445 | 0.7533 |
0.0354 | 8.28 | 5200 | 1.2345 | 0.7581 |
0.0499 | 8.44 | 5300 | 1.1776 | 0.7571 |
0.1046 | 8.6 | 5400 | 1.1939 | 0.76 |
0.0912 | 8.76 | 5500 | 1.2373 | 0.7486 |
0.0589 | 8.92 | 5600 | 1.2165 | 0.7552 |
0.0829 | 9.08 | 5700 | 1.2684 | 0.7505 |
0.0897 | 9.24 | 5800 | 1.2467 | 0.7552 |
0.1114 | 9.39 | 5900 | 1.2303 | 0.7571 |
0.0712 | 9.55 | 6000 | 1.1997 | 0.7638 |
0.0621 | 9.71 | 6100 | 1.2094 | 0.7629 |
0.037 | 9.87 | 6200 | 1.2147 | 0.7619 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2