|
--- |
|
inference: true |
|
pipeline_tag: audio-classification |
|
tags: |
|
- speech |
|
- audio |
|
- HUBert |
|
--- |
|
|
|
|
|
Working example of using pretrained model to predict emotion in local audio file |
|
|
|
``` |
|
|
|
def predict_emotion_hubert(audio_file): |
|
""" inspired by an example from https://github.com/m3hrdadfi/soxan """ |
|
from audio_models import HubertForSpeechClassification |
|
from transformers import Wav2Vec2FeatureExtractor, AutoConfig |
|
import torch.nn.functional as F |
|
import torch |
|
import numpy as np |
|
from pydub import AudioSegment |
|
|
|
model = HubertForSpeechClassification.from_pretrained("Rajaram1996/Hubert_emotion") # Downloading: 362M |
|
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/hubert-base-ls960") |
|
sampling_rate=16000 # defined by the model; must convert mp3 to this rate. |
|
config = AutoConfig.from_pretrained("Rajaram1996/Hubert_emotion") |
|
|
|
def speech_file_to_array(path, sampling_rate): |
|
# using torchaudio... |
|
# speech_array, _sampling_rate = torchaudio.load(path) |
|
# resampler = torchaudio.transforms.Resample(_sampling_rate, sampling_rate) |
|
# speech = resampler(speech_array).squeeze().numpy() |
|
sound = AudioSegment.from_file(path) |
|
sound = sound.set_frame_rate(sampling_rate) |
|
sound_array = np.array(sound.get_array_of_samples()) |
|
return sound_array |
|
|
|
sound_array = speech_file_to_array(audio_file, sampling_rate) |
|
inputs = feature_extractor(sound_array, sampling_rate=sampling_rate, return_tensors="pt", padding=True) |
|
inputs = {key: inputs[key].to("cpu").float() for key in inputs} |
|
|
|
with torch.no_grad(): |
|
logits = model(**inputs).logits |
|
|
|
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] |
|
outputs = [{ |
|
"emo": config.id2label[i], |
|
"score": round(score * 100, 1)} |
|
for i, score in enumerate(scores) |
|
] |
|
return [row for row in sorted(outputs, key=lambda x:x["score"], reverse=True) if row['score'] != '0.0%'][:2] |
|
``` |
|
|
|
``` |
|
|
|
result = predict_emotion_hubert("male-crying.mp3") |
|
>>> result |
|
[{'emo': 'male_sad', 'score': 91.0}, {'emo': 'male_fear', 'score': 4.8}] |
|
``` |
|
|
|
|