results / README.md
Rakuto's picture
End of training
78a190e verified
|
raw
history blame
4.97 kB
metadata
library_name: transformers
license: llama3.2
base_model: meta-llama/Llama-3.2-3B-Instruct
tags:
  - trl
  - orpo
  - generated_from_trainer
model-index:
  - name: results
    results: []

results

This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7865
  • Rewards/chosen: -0.0728
  • Rewards/rejected: -0.1410
  • Rewards/accuracies: 1.0
  • Rewards/margins: 0.0682
  • Logps/rejected: -1.4102
  • Logps/chosen: -0.7284
  • Logits/rejected: -1.3629
  • Logits/chosen: -1.0739
  • Nll Loss: 0.7297
  • Log Odds Ratio: -0.3156
  • Log Odds Chosen: 1.0813

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Nll Loss Log Odds Ratio Log Odds Chosen
No log 0.8 5 3.8120 -0.2526 -0.2936 1.0 0.0411 -2.9364 -2.5255 -0.1324 0.0341 3.7999 -0.5042 0.4449
4.046 1.6 10 2.5798 -0.1655 -0.2025 0.8333 0.0370 -2.0247 -1.6551 -0.5901 -0.3606 2.5283 -0.4995 0.4487
4.046 2.4 15 1.7548 -0.1310 -0.1707 0.8333 0.0396 -1.7065 -1.3105 -1.0779 -0.8067 1.6757 -0.4762 0.5189
1.6806 3.2 20 1.2964 -0.1081 -0.1505 0.8333 0.0423 -1.5045 -1.0815 -1.2319 -0.9478 1.2096 -0.4555 0.5966
1.6806 4.0 25 1.0927 -0.0927 -0.1413 0.8333 0.0486 -1.4130 -0.9266 -1.2313 -0.9509 1.0155 -0.4199 0.7223
0.9531 4.8 30 0.9672 -0.0831 -0.1381 1.0 0.0550 -1.3815 -0.8311 -1.2424 -0.9626 0.8961 -0.3827 0.8429
0.9531 5.6 35 0.8865 -0.0779 -0.1375 1.0 0.0597 -1.3751 -0.7785 -1.2870 -0.9968 0.8182 -0.3555 0.9335
0.7263 6.4 40 0.8374 -0.0755 -0.1388 1.0 0.0633 -1.3876 -0.7545 -1.3805 -1.0853 0.7755 -0.3371 0.9980
0.7263 7.2 45 0.8076 -0.0739 -0.1400 1.0 0.0660 -1.3996 -0.7393 -1.3674 -1.0741 0.7480 -0.3248 1.0448
0.6366 8.0 50 0.7919 -0.0730 -0.1405 1.0 0.0675 -1.4052 -0.7297 -1.3511 -1.0575 0.7335 -0.3178 1.0721
0.6366 8.8 55 0.7878 -0.0729 -0.1410 1.0 0.0681 -1.4100 -0.7293 -1.3573 -1.0602 0.7302 -0.3161 1.0787
0.6276 9.6 60 0.7865 -0.0728 -0.1410 1.0 0.0682 -1.4102 -0.7284 -1.3629 -1.0739 0.7297 -0.3156 1.0813

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.2.0+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1