results / README.md
Rakuto's picture
End of training
c61909c verified
metadata
library_name: transformers
license: llama3.2
base_model: meta-llama/Llama-3.2-3B-Instruct
tags:
  - trl
  - orpo
  - generated_from_trainer
model-index:
  - name: results
    results: []

results

This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7838
  • Rewards/chosen: -0.0726
  • Rewards/rejected: -0.1414
  • Rewards/accuracies: 1.0
  • Rewards/margins: 0.0688
  • Logps/rejected: -1.4145
  • Logps/chosen: -0.7263
  • Logits/rejected: -1.3572
  • Logits/chosen: -1.0579
  • Nll Loss: 0.7279
  • Log Odds Ratio: -0.3123
  • Log Odds Chosen: 1.0916

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Nll Loss Log Odds Ratio Log Odds Chosen
4.0477 1.6 10 2.6148 -0.1668 -0.2037 0.8333 0.0369 -2.0366 -1.6676 -0.5541 -0.3265 2.5641 -0.5002 0.4474
1.7128 3.2 20 1.3152 -0.1092 -0.1512 0.8333 0.0421 -1.5124 -1.0917 -1.2255 -0.9402 1.2267 -0.4566 0.5915
0.9601 4.8 30 0.9698 -0.0833 -0.1380 1.0 0.0547 -1.3800 -0.8326 -1.2364 -0.9499 0.8983 -0.3832 0.8390
0.7231 6.4 40 0.8362 -0.0752 -0.1390 1.0 0.0638 -1.3898 -0.7521 -1.3672 -1.0683 0.7749 -0.3345 1.0067
0.6324 8.0 50 0.7904 -0.0729 -0.1410 1.0 0.0681 -1.4101 -0.7290 -1.3658 -1.0673 0.7331 -0.3152 1.0809
0.6228 9.6 60 0.7838 -0.0726 -0.1414 1.0 0.0688 -1.4145 -0.7263 -1.3572 -1.0579 0.7279 -0.3123 1.0916

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.2.0+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1