Rami's picture
update model card README.md
37690e5
|
raw
history blame
2.46 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
model-index:
  - name: multi-label-class-classification-on-github-issues
    results: []

multi-label-class-classification-on-github-issues

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3785
  • Micro f1: 0.5031
  • Macro f1: 0.0317

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 512
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Micro f1 Macro f1
No log 1.0 4 0.6548 0.2035 0.0412
No log 2.0 8 0.5953 0.2747 0.0395
No log 3.0 12 0.5509 0.3474 0.0376
No log 4.0 16 0.5159 0.4098 0.0375
No log 5.0 20 0.4859 0.4842 0.0362
No log 6.0 24 0.4625 0.4875 0.0315
No log 7.0 28 0.4434 0.4893 0.0315
No log 8.0 32 0.4268 0.4906 0.0315
No log 9.0 36 0.4134 0.4920 0.0306
No log 10.0 40 0.4027 0.4943 0.0308
No log 11.0 44 0.3939 0.4952 0.0309
No log 12.0 48 0.3872 0.4986 0.0312
No log 13.0 52 0.3824 0.5025 0.0316
No log 14.0 56 0.3796 0.5033 0.0317
No log 15.0 60 0.3785 0.5031 0.0317

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.12.1+cu113
  • Datasets 2.7.1
  • Tokenizers 0.13.2