Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
Input:
Write a code to create the snake game
Output:
Here is a simple implementation of the classic Snake game in Python using the Pygame library. This code will create a window with a snake that moves in a grid, eating apples and growing in length.
import pygame
import random
import time
# Initialize Pygame
pygame.init()
# Set the dimensions of the window
width, height = 640, 480
screen = pygame.display.set_mode((width, height))
pygame.display.set_caption('Snake Game')
# Define colors
white = (255, 255, 255)
black = (0, 0, 0)
red = (255, 0, 0)
green = (0, 255, 0)
# Define the snake
snake_pos = [20, 20]
snake_dir = [1, 0]
snake_size = 16
snake_length = 1
# Define the apple
apple_pos = [random.randint(20, 300), randomative(20, 300)
apple_size = 16
# Define the clock
clock = pygame.time.Clock()
# Game loop
running = True
while running:
# Handle events
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
# Move the snake
new_pos = [snake_pos[0] + snake_dir[0], snake_pos[1] + snake_dir[1]]
if new_pos[0] < 0 or new_pos[0] > width - snake_size:
snake_dir[0] *= -1
if new_pos[1] < 0 or new_pos[1] > height - snake_size:
snake_dir[1] *= -1
snake_pos[0] = new_pos[0]
snake_pos[1] = new_pos[1]
# Check for apple collision
if snake_pos[0] == apple_pos[0] and snake_pos[1] == apple_pos[1]:
apple_pos = [random.randint(20, 300), random.randint(20, 300)]
snake_length += 1
# Draw the screen
screen.fill(white)
pygame.draw.rect(screen, red, [apple_pos[0], apple_pos[1], apple_size, apple_size])
for i in range(snake_length):
pygame.draw.rect(screen, green, [snake_pos[0] - i * snake_size, snake_pos[1], snake_size, snake_size])
pygame.display.flip()
# Control the frame rate
clock.tick(10)
pygame.quit()
This code will create a window with a snake that moves in a grid, eating apples and growing in length. The snake will bounce off the walls of the window. To play the game, simply run the code and use the arrow keys to control the snake.<|endoftext|>
Ramikan-BR/P3-mini-v6-Q8_0-GGUF
This model was converted to GGUF format from Ramikan-BR/P3-mini-v6
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo Ramikan-BR/P3-mini-v6-Q8_0-GGUF --hf-file p3-mini-v6-q8_0.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo Ramikan-BR/P3-mini-v6-Q8_0-GGUF --hf-file p3-mini-v6-q8_0.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo Ramikan-BR/P3-mini-v6-Q8_0-GGUF --hf-file p3-mini-v6-q8_0.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo Ramikan-BR/P3-mini-v6-Q8_0-GGUF --hf-file p3-mini-v6-q8_0.gguf -c 2048
- Downloads last month
- 3
Model tree for Ramikan-BR/P3-mini-v6-Q8_0-GGUF
Base model
unsloth/Phi-3-mini-4k-instruct-bnb-4bit