massive_indo
This model is a fine-tuned version of xxxxxxxxx on the massive dataset. It achieves the following results on the evaluation set:
- Loss: 0.6866
- F1: 0.8161
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
2.0824 | 0.11 | 2000 | 1.6825 | 0.3184 |
1.2059 | 0.22 | 4000 | 1.1052 | 0.5593 |
0.8955 | 0.33 | 6000 | 0.8835 | 0.6588 |
0.7748 | 0.44 | 8000 | 0.8215 | 0.6894 |
0.6839 | 0.54 | 10000 | 0.7765 | 0.7234 |
0.6299 | 0.65 | 12000 | 0.7514 | 0.7600 |
0.5778 | 0.76 | 14000 | 0.6906 | 0.7707 |
0.533 | 0.87 | 16000 | 0.6867 | 0.7771 |
0.4877 | 0.98 | 18000 | 0.6850 | 0.7861 |
0.4114 | 1.09 | 20000 | 0.6757 | 0.7907 |
0.3815 | 1.2 | 22000 | 0.6798 | 0.7956 |
0.3785 | 1.31 | 24000 | 0.6809 | 0.7987 |
0.3645 | 1.42 | 26000 | 0.6739 | 0.8033 |
0.3347 | 1.53 | 28000 | 0.6768 | 0.8037 |
0.3345 | 1.63 | 30000 | 0.6457 | 0.8087 |
0.3254 | 1.74 | 32000 | 0.6721 | 0.8055 |
0.3131 | 1.85 | 34000 | 0.6542 | 0.8125 |
0.3072 | 1.96 | 36000 | 0.6652 | 0.8070 |
0.2343 | 2.07 | 38000 | 0.6754 | 0.8143 |
0.2323 | 2.18 | 40000 | 0.6790 | 0.8167 |
0.232 | 2.29 | 42000 | 0.6967 | 0.8101 |
0.2171 | 2.4 | 44000 | 0.6999 | 0.8116 |
0.215 | 2.51 | 46000 | 0.6927 | 0.8095 |
0.2136 | 2.62 | 48000 | 0.6917 | 0.8155 |
0.2008 | 2.72 | 50000 | 0.6837 | 0.8137 |
0.1997 | 2.83 | 52000 | 0.6925 | 0.8140 |
0.1926 | 2.94 | 54000 | 0.6866 | 0.8161 |
Framework versions
- Transformers 4.34.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.