metadata
language: es
tags:
- zero-shot-classification
- nli
- pytorch
datasets:
- xnli
license: mit
pipeline_tag: zero-shot-classification
widget:
- text: >-
El autor se perfila, a los 50 años de su muerte, como uno de los grandes
de su siglo
candidate_labels: cultura, sociedad, economia, salud, deportes
bert-base-spanish-wwm-cased-xnli
UPDATE, 15.10.2021: Check out our new zero-shot classifiers, much more lightweight and even outperforming this one: zero-shot SELECTRA small and zero-shot SELECTRA medium.
Model description
This model is a fine-tuned version of the spanish BERT model with the Spanish portion of the XNLI dataset. You can have a look at the training script for details of the training.
How to use
You can use this model with Hugging Face's zero-shot-classification pipeline:
from transformers import pipeline
classifier = pipeline("zero-shot-classification",
model="Recognai/bert-base-spanish-wwm-cased-xnli")
classifier(
"El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo",
candidate_labels=["cultura", "sociedad", "economia", "salud", "deportes"],
hypothesis_template="Este ejemplo es {}."
)
"""output
{'sequence': 'El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo',
'labels': ['cultura', 'sociedad', 'economia', 'salud', 'deportes'],
'scores': [0.38897448778152466,
0.22997373342514038,
0.1658431738615036,
0.1205764189362526,
0.09463217109441757]}
"""
Eval results
Accuracy for the test set:
XNLI-es | |
---|---|
bert-base-spanish-wwm-cased-xnli | 79.9% |