bert-base-spanish-wwm-cased-xnli / zeroshot_training_script.py
dcfidalgo
add training script
435eb54
#!/usr/bin/env python
# coding: utf-8
# # Creating a Zero-Shot classifier based on BETO
#
# This notebook/script fine-tunes a BETO (spanish bert, 'dccuchile/bert-base-spanish-wwm-cased') model on the spanish XNLI dataset.
# The fine-tuned model can then be fed to a Huggingface ZeroShot pipeline to obtain a ZeroShot classifier.
# In[ ]:
from datasets import load_dataset, Dataset, load_metric, load_from_disk
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import Trainer, TrainingArguments
import torch
from pathlib import Path
# from ray import tune
# from ray.tune.suggest.hyperopt import HyperOptSearch
# from ray.tune.schedulers import ASHAScheduler
# # Prepare the datasets
# In[ ]:
xnli_es = load_dataset("xnli", "es")
# In[ ]:
xnli_es
# >joeddav
# >Aug '20
# >
# >@rsk97 In addition, just make sure the model used is trained on an NLI task and that the **last output label corresponds to entailment** while the **first output label corresponds to contradiction**.
#
# => We change the original `label` and use the `labels` column, which is required by a `AutoModelForSequenceClassification`
# In[ ]:
# see markdown above
def switch_label_id(row):
if row["label"] == 0:
return {"labels": 2}
elif row["label"] == 2:
return {"labels": 0}
else:
return {"labels": 1}
for split in xnli_es:
xnli_es[split] = xnli_es[split].map(switch_label_id)
# ## Tokenize data
# In[ ]:
tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-cased")
# In a first attempt i padded all data to the maximum length of the dataset (379). However, the traninig takes substanially longer with all the paddings, it's better to pass in the tokenizer to the `Trainer` and let the `Trainer` do the padding on a batch level.
# In[ ]:
# Figured out max length of the dataset manually
# max_length = 379
def tokenize(row):
return tokenizer(row["premise"], row["hypothesis"], truncation=True, max_length=512) #, padding="max_length", max_length=max_length)
# In[ ]:
data = {}
for split in xnli_es:
data[split] = xnli_es[split].map(
tokenize,
remove_columns=["hypothesis", "premise", "label"],
batched=True,
batch_size=128
)
# In[ ]:
train_path = str(Path("./train_ds").absolute())
valid_path = str(Path("./valid_ds").absolute())
data["train"].save_to_disk(train_path)
data["validation"].save_to_disk(valid_path)
# In[ ]:
# We can use `datasets.Dataset`s directly
# class XnliDataset(torch.utils.data.Dataset):
# def __init__(self, data):
# self.data = data
# def __getitem__(self, idx):
# item = {key: torch.tensor(val) for key, val in self.data[idx].items()}
# return item
# def __len__(self):
# return len(self.data)
# In[ ]:
def trainable(config):
metric = load_metric("xnli", "es")
def compute_metrics(eval_pred):
predictions, labels = eval_pred
predictions = predictions.argmax(axis=-1)
return metric.compute(predictions=predictions, references=labels)
model = AutoModelForSequenceClassification.from_pretrained("dccuchile/bert-base-spanish-wwm-cased", num_labels=3)
training_args = TrainingArguments(
output_dir='./results', # output directory
do_train=True,
do_eval=True,
evaluation_strategy="steps",
eval_steps=500,
load_best_model_at_end=True,
metric_for_best_model="eval_accuracy",
num_train_epochs=config["epochs"], # total number of training epochs
per_device_train_batch_size=config["batch_size"], # batch size per device during training
per_device_eval_batch_size=config["batch_size_eval"], # batch size for evaluation
warmup_steps=config["warmup_steps"], # 500
weight_decay=config["weight_decay"], # 0.001 # strength of weight decay
learning_rate=config["learning_rate"], # 5e-05
logging_dir='./logs', # directory for storing logs
logging_steps=250,
#save_steps=500, # ignored when using load_best_model_at_end
save_total_limit=10,
no_cuda=False,
disable_tqdm=True,
)
# train_dataset = XnliDataset(load_from_disk(config["train_path"]))
# valid_dataset = XnliDataset(load_from_disk(config["valid_path"]))
train_dataset = load_from_disk(config["train_path"])
valid_dataset = load_from_disk(config["valid_path"])
trainer = Trainer(
model,
tokenizer=tokenizer,
args=training_args, # training arguments, defined above
train_dataset=train_dataset, # training dataset
eval_dataset=valid_dataset, # evaluation dataset
compute_metrics=compute_metrics,
)
trainer.train()
# In[ ]:
trainable(
{
"train_path": train_path,
"valid_path": valid_path,
"batch_size": 16,
"batch_size_eval": 64,
"warmup_steps": 500,
"weight_decay": 0.001,
"learning_rate": 5e-5,
"epochs": 3,
}
)
# # HPO
# In[ ]:
# config = {
# "train_path": train_path,
# "valid_path": valid_path,
# "warmup_steps": tune.randint(0, 500),
# "weight_decay": tune.loguniform(0.00001, 0.1),
# "learning_rate": tune.loguniform(5e-6, 5e-4),
# "epochs": tune.choice([2, 3, 4])
# }
# # In[ ]:
# analysis = tune.run(
# trainable,
# config=config,
# metric="eval_acc",
# mode="max",
# #search_alg=HyperOptSearch(),
# #scheduler=ASHAScheduler(),
# num_samples=1,
# )
# # In[ ]:
# def model_init():
# return AutoModelForSequenceClassification.from_pretrained("dccuchile/bert-base-spanish-wwm-cased", num_labels=3)
# trainer = Trainer(
# args=training_args, # training arguments, defined above
# train_dataset=train_dataset, # training dataset
# eval_dataset=valid_dataset, # evaluation dataset
# model_init=model_init,
# compute_metrics=compute_metrics,
# )
# # In[ ]:
# best_trial = trainer.hyperparameter_search(
# direction="maximize",
# backend="ray",
# n_trials=2,
# # Choose among many libraries:
# # https://docs.ray.io/en/latest/tune/api_docs/suggestion.html
# search_alg=HyperOptSearch(mode="max", metric="accuracy"),
# # Choose among schedulers:
# # https://docs.ray.io/en/latest/tune/api_docs/schedulers.html
# scheduler=ASHAScheduler(mode="max", metric="accuracy"),
# local_dir="tune_runs",
# )