File size: 7,576 Bytes
59adbd3 a0924ff 4c9978d a0924ff 4c9978d a0924ff 4c9978d a0924ff 4c9978d a0924ff 59adbd3 4c9978d a0924ff 59adbd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
tags:
- generated_from_trainer
model-index:
- name: rubert-base-srl-seqlabeling
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# rubert-base-srl-seqlabeling
This model is a fine-tuned version of [./ruBert-base/](https://huggingface.co/./ruBert-base/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1723
- Causator Precision: 0.8539
- Causator Recall: 0.8352
- Causator F1: 0.8444
- Causator Number: 91
- Expiriencer Precision: 0.9259
- Expiriencer Recall: 0.9740
- Expiriencer F1: 0.9494
- Expiriencer Number: 77
- Instrument Precision: 0.375
- Instrument Recall: 1.0
- Instrument F1: 0.5455
- Instrument Number: 3
- Other Precision: 0.0
- Other Recall: 0.0
- Other F1: 0.0
- Other Number: 1
- Predicate Precision: 0.9352
- Predicate Recall: 0.9902
- Predicate F1: 0.9619
- Predicate Number: 102
- Overall Precision: 0.8916
- Overall Recall: 0.9307
- Overall F1: 0.9107
- Overall Accuracy: 0.9667
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Causator Precision | Causator Recall | Causator F1 | Causator Number | Expiriencer Precision | Expiriencer Recall | Expiriencer F1 | Expiriencer Number | Instrument Precision | Instrument Recall | Instrument F1 | Instrument Number | Other Precision | Other Recall | Other F1 | Other Number | Predicate Precision | Predicate Recall | Predicate F1 | Predicate Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------------------:|:---------------:|:-----------:|:---------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:--------------------:|:-----------------:|:-------------:|:-----------------:|:---------------:|:------------:|:--------:|:------------:|:-------------------:|:----------------:|:------------:|:----------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.2552 | 1.0 | 56 | 0.3471 | 0.8841 | 0.6703 | 0.7625 | 91 | 0.8421 | 0.8312 | 0.8366 | 77 | 0.0 | 0.0 | 0.0 | 3 | 0.0 | 0.0 | 0.0 | 1 | 0.9259 | 0.9804 | 0.9524 | 102 | 0.8893 | 0.8212 | 0.8539 | 0.9203 |
| 0.2385 | 2.0 | 112 | 0.1608 | 0.9103 | 0.7802 | 0.8402 | 91 | 0.9375 | 0.9740 | 0.9554 | 77 | 0.2857 | 0.6667 | 0.4 | 3 | 0.0 | 0.0 | 0.0 | 1 | 0.9519 | 0.9706 | 0.9612 | 102 | 0.9182 | 0.9015 | 0.9098 | 0.9554 |
| 0.0367 | 3.0 | 168 | 0.1311 | 0.8902 | 0.8022 | 0.8439 | 91 | 0.9375 | 0.9740 | 0.9554 | 77 | 0.4286 | 1.0 | 0.6 | 3 | 0.0 | 0.0 | 0.0 | 1 | 0.9709 | 0.9804 | 0.9756 | 102 | 0.9228 | 0.9161 | 0.9194 | 0.9673 |
| 0.0494 | 4.0 | 224 | 0.1507 | 0.7812 | 0.8242 | 0.8021 | 91 | 0.9241 | 0.9481 | 0.9359 | 77 | 0.4286 | 1.0 | 0.6 | 3 | 0.0 | 0.0 | 0.0 | 1 | 0.9524 | 0.9804 | 0.9662 | 102 | 0.8746 | 0.9161 | 0.8948 | 0.9637 |
| 0.0699 | 5.0 | 280 | 0.1830 | 0.8276 | 0.7912 | 0.8090 | 91 | 0.8941 | 0.9870 | 0.9383 | 77 | 0.375 | 1.0 | 0.5455 | 3 | 0.0 | 0.0 | 0.0 | 1 | 0.9352 | 0.9902 | 0.9619 | 102 | 0.875 | 0.9197 | 0.8968 | 0.9560 |
| 0.0352 | 6.0 | 336 | 0.1994 | 0.7857 | 0.8462 | 0.8148 | 91 | 0.9048 | 0.9870 | 0.9441 | 77 | 0.375 | 1.0 | 0.5455 | 3 | 0.0 | 0.0 | 0.0 | 1 | 0.9266 | 0.9902 | 0.9573 | 102 | 0.8595 | 0.9380 | 0.8970 | 0.9572 |
| 0.0186 | 7.0 | 392 | 0.1657 | 0.8652 | 0.8462 | 0.8556 | 91 | 0.9146 | 0.9740 | 0.9434 | 77 | 0.375 | 1.0 | 0.5455 | 3 | 0.0 | 0.0 | 0.0 | 1 | 0.9352 | 0.9902 | 0.9619 | 102 | 0.8920 | 0.9343 | 0.9127 | 0.9673 |
| 0.0052 | 8.0 | 448 | 0.1716 | 0.8556 | 0.8462 | 0.8508 | 91 | 0.9259 | 0.9740 | 0.9494 | 77 | 0.375 | 1.0 | 0.5455 | 3 | 0.0 | 0.0 | 0.0 | 1 | 0.9352 | 0.9902 | 0.9619 | 102 | 0.8920 | 0.9343 | 0.9127 | 0.9673 |
| 0.0094 | 9.0 | 504 | 0.1715 | 0.8444 | 0.8352 | 0.8398 | 91 | 0.9259 | 0.9740 | 0.9494 | 77 | 0.4286 | 1.0 | 0.6 | 3 | 0.0 | 0.0 | 0.0 | 1 | 0.9352 | 0.9902 | 0.9619 | 102 | 0.8916 | 0.9307 | 0.9107 | 0.9667 |
| 0.0078 | 10.0 | 560 | 0.1723 | 0.8539 | 0.8352 | 0.8444 | 91 | 0.9259 | 0.9740 | 0.9494 | 77 | 0.375 | 1.0 | 0.5455 | 3 | 0.0 | 0.0 | 0.0 | 1 | 0.9352 | 0.9902 | 0.9619 | 102 | 0.8916 | 0.9307 | 0.9107 | 0.9667 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0+cu102
- Datasets 1.15.1
- Tokenizers 0.10.3
|