from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from PIL import Image, ImageDraw, ImageFont
import re
def draw_circle(draw, center, radius=10, width=2, outline_color=(0, 255, 0), is_fill=False, bg_color=(0, 255, 0), transparency=80):
# Calculate the bounding box coordinates for the circle
x1 = center[0] - radius
y1 = center[1] - radius
x2 = center[0] + radius
y2 = center[1] + radius
bbox = (x1, y1, x2, y2)
# Draw the circle
if is_fill:
# Calculate the alpha value based on the transparency percentage
alpha = int((1 - transparency / 100) * 255)
# Set the fill color with the specified background color and transparency
fill_color = tuple(bg_color) + (alpha,)
draw.ellipse(bbox, width=width, outline=outline_color, fill=fill_color)
else:
draw.ellipse(bbox, width=width, outline=outline_color)
def draw_point(draw, center, radius1=3, radius2=6, color=(0, 255, 0)):
draw_circle(draw, center, radius=radius1, outline_color=color)
draw_circle(draw, center, radius=radius2, outline_color=color)
def draw_rectangle(draw, box_coords, width=2, outline_color=(0, 255, 0), is_fill=False, bg_color=(0, 255, 0), transparency=80):
if is_fill:
# Calculate the alpha value based on the transparency percentage
alpha = int((1 - transparency / 100) * 255)
# Set the fill color with the specified background color and transparency
fill_color = tuple(bg_color) + (alpha,)
draw.rectangle(box_coords, width=width, outline=outline_color, fill=fill_color)
else:
draw.rectangle(box_coords, width=width, outline=outline_color)
def draw(path, out_path, response):
img = Image.open(path).convert("RGB")
draw = ImageDraw.Draw(img)
box_coords = re.findall(r"<box>(.*?)</box>", response)
for box in box_coords:
try:
x1, y1, x2, y2 = box.replace("(", "").replace(")", "").split(",")
x1, y1, x2, y2 = float(x1) * img.width/1000, float(y1) * img.height/1000, float(x2) * img.width/1000, float(y2) * img.height/1000
draw_rectangle(draw, (x1, y1, x2, y2))
except:
print("There were some errors while parsing the bounding box.")
point_coords = re.findall(r"<point>(.*?)</point>", response)
for point in point_coords:
try:
x1, y1 = point.replace("(", "").replace(")", "").split(",")
x1, y1 = float(x1) * img.width/1000, float(y1) * img.height/1000
draw_point(draw, (x1, y1))
except:
print("There were some errors while parsing the bounding point.")
img.save(out_path)
def load_model_and_tokenizer(path, device):
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(path, device_map=device, trust_remote_code=True).eval()
return model, tokenizer
def infer(model, tokenizer, image_path, text):
query = tokenizer.from_list_format([
{'image': image_path},
{'text': text},
])
response, history = model.chat(tokenizer, query=query, history=None)
return response
if __name__ == "__main__":
device = "cuda:0"
model_path = "<your_model_path>"
model, tokenizer = load_model_and_tokenizer(model_path, device)
while True:
image_path = input("image path >>>>> ")
if image_path == "stop":
break
query = input("Human:")
if query == "stop":
break
response = infer(model, tokenizer, image_path, query)
draw(image_path, "1.jpg", response)
- Downloads last month
- 75
Inference API (serverless) does not yet support model repos that contain custom code.