Quantization made by Richard Erkhov.
MMed-Llama-3-8B - GGUF
- Model creator: https://huggingface.co/Henrychur/
- Original model: https://huggingface.co/Henrychur/MMed-Llama-3-8B/
Name | Quant method | Size |
---|---|---|
MMed-Llama-3-8B.Q2_K.gguf | Q2_K | 2.96GB |
MMed-Llama-3-8B.IQ3_XS.gguf | IQ3_XS | 3.28GB |
MMed-Llama-3-8B.IQ3_S.gguf | IQ3_S | 3.43GB |
MMed-Llama-3-8B.Q3_K_S.gguf | Q3_K_S | 3.41GB |
MMed-Llama-3-8B.IQ3_M.gguf | IQ3_M | 3.52GB |
MMed-Llama-3-8B.Q3_K.gguf | Q3_K | 3.74GB |
MMed-Llama-3-8B.Q3_K_M.gguf | Q3_K_M | 3.74GB |
MMed-Llama-3-8B.Q3_K_L.gguf | Q3_K_L | 4.03GB |
MMed-Llama-3-8B.IQ4_XS.gguf | IQ4_XS | 4.18GB |
MMed-Llama-3-8B.Q4_0.gguf | Q4_0 | 4.34GB |
MMed-Llama-3-8B.IQ4_NL.gguf | IQ4_NL | 4.38GB |
MMed-Llama-3-8B.Q4_K_S.gguf | Q4_K_S | 4.37GB |
MMed-Llama-3-8B.Q4_K.gguf | Q4_K | 4.58GB |
MMed-Llama-3-8B.Q4_K_M.gguf | Q4_K_M | 4.58GB |
MMed-Llama-3-8B.Q4_1.gguf | Q4_1 | 4.78GB |
MMed-Llama-3-8B.Q5_0.gguf | Q5_0 | 5.21GB |
MMed-Llama-3-8B.Q5_K_S.gguf | Q5_K_S | 5.21GB |
MMed-Llama-3-8B.Q5_K.gguf | Q5_K | 5.34GB |
MMed-Llama-3-8B.Q5_K_M.gguf | Q5_K_M | 5.34GB |
MMed-Llama-3-8B.Q5_1.gguf | Q5_1 | 5.65GB |
MMed-Llama-3-8B.Q6_K.gguf | Q6_K | 6.14GB |
MMed-Llama-3-8B.Q8_0.gguf | Q8_0 | 7.95GB |
Original model description:
license: llama3 datasets: - Henrychur/MMedC language: - en - zh - ja - fr - ru - es tags: - medical
MMedLM
π»Github Repo π¨οΈarXiv Paper
The official model weights for "Towards Building Multilingual Language Model for Medicine".
Introduction
This repo contains MMed-Llama 3, a multilingual medical foundation model with 8 billion parameters. MMed-Llama 3 builds upon the foundation of Llama 3 and has been further pretrained on MMedC, a comprehensive multilingual medical corpus. This further pretraining enhances the model's medical-domain knowledge.
The model underwent further pretraining on MMedC with the following hyperparameters:
- Iterations: 15000
- Global batch size: 512
- Cutoff length: 8192
- Learning rate: 2e-5
The model can be loaded as follows:
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Henrychur/MMed-Llama-3-8B")
model = AutoModelForCausalLM.from_pretrained("Henrychur/MMed-Llama-3-8B", torch_dtype=torch.float16)
- Note that this is a foundation model that has not undergone instruction fine-tuning.
News
[2024.2.21] Our pre-print paper is released ArXiv. Dive into our findings here.
[2024.2.20] We release MMedLM and MMedLM 2. With an auto-regressive continues training on MMedC, these models achieves superior performance compared to all other open-source models, even rivaling GPT-4 on MMedBench.
[2023.2.20] We release MMedC, a multilingual medical corpus containing 25.5B tokens.
[2023.2.20] We release MMedBench, a new multilingual medical multi-choice question-answering benchmark with rationale. Check out the leaderboard here.
Evaluation on MMedBench
The further pretrained MMedLM 2 showcast it's great performance in medical domain across different language.
Method | Size | Year | MMedC | MMedBench | English | Chinese | Japanese | French | Russian | Spanish | Avg. |
---|---|---|---|---|---|---|---|---|---|---|---|
GPT-3.5 | - | 2022.12 | β | β | 56.88 | 52.29 | 34.63 | 32.48 | 66.36 | 66.06 | 51.47 |
GPT-4 | - | 2023.3 | β | β | 78.00 | 75.07 | 72.91 | 56.59 | 83.62 | 85.67 | 74.27 |
Gemini-1.0 pro | - | 2024.1 | β | β | 53.73 | 60.19 | 44.22 | 29.90 | 73.44 | 69.69 | 55.20 |
BLOOMZ | 7B | 2023.5 | β | trainset | 43.28 | 58.06 | 32.66 | 26.37 | 62.89 | 47.34 | 45.10 |
InternLM | 7B | 2023.7 | β | trainset | 44.07 | 64.62 | 37.19 | 24.92 | 58.20 | 44.97 | 45.67 |
Llama 2 | 7B | 2023.7 | β | trainset | 43.36 | 50.29 | 25.13 | 20.90 | 66.80 | 47.10 | 42.26 |
MedAlpaca | 7B | 2023.3 | β | trainset | 46.74 | 44.80 | 29.64 | 21.06 | 59.38 | 45.00 | 41.11 |
ChatDoctor | 7B | 2023.4 | β | trainset | 43.52 | 43.26 | 25.63 | 18.81 | 62.50 | 43.44 | 39.53 |
PMC-LLaMA | 7B | 2023.4 | β | trainset | 47.53 | 42.44 | 24.12 | 20.74 | 62.11 | 43.29 | 40.04 |
Mistral | 7B | 2023.10 | β | trainset | 61.74 | 71.10 | 44.72 | 48.71 | 74.22 | 63.86 | 60.73 |
InternLM 2 | 7B | 2024.2 | β | trainset | 57.27 | 77.55 | 47.74 | 41.00 | 68.36 | 59.59 | 58.59 |
MMedLM(Ours) | 7B | - | β | trainset | 49.88 | 70.49 | 46.23 | 36.66 | 72.27 | 54.52 | 55.01 |
MMedLM 2(Ours) | 7B | - | β | trainset | 61.74 | 80.01 | 61.81 | 52.09 | 80.47 | 67.65 | 67.30 |
MMed-Llama 3(Ours) | 8B | - | β | trainset | 66.06 | 79.25 | 61.81 | 55.63 | 75.39 | 68.38 | 67.75 |
- GPT and Gemini is evluated under zero-shot setting through API
- Open-source models first undergo training on the trainset of MMedBench before evaluate.
Contact
If you have any question, please feel free to contact [email protected].
Citation
@misc{qiu2024building,
title={Towards Building Multilingual Language Model for Medicine},
author={Pengcheng Qiu and Chaoyi Wu and Xiaoman Zhang and Weixiong Lin and Haicheng Wang and Ya Zhang and Yanfeng Wang and Weidi Xie},
year={2024},
eprint={2402.13963},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 58