Quantization made by Richard Erkhov.
calme-2.3-llama3.1-70b - GGUF
- Model creator: https://huggingface.co/MaziyarPanahi/
- Original model: https://huggingface.co/MaziyarPanahi/calme-2.3-llama3.1-70b/
Original model description:
language: - en library_name: transformers tags: - chat - llama - facebook - llaam3 - finetune - chatml base_model: meta-llama/Meta-Llama-3.1-70B-Instruct datasets: - MaziyarPanahi/truthy-dpo-v0.1-axolotl model_name: calme-2.3-llama3.1-70b pipeline_tag: text-generation inference: false model_creator: MaziyarPanahi quantized_by: MaziyarPanahi model-index: - name: calme-2.3-llama3.1-70b results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 86.05 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-2.3-llama3.1-70b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 55.59 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-2.3-llama3.1-70b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 21.45 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-2.3-llama3.1-70b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 12.53 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-2.3-llama3.1-70b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 17.74 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-2.3-llama3.1-70b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 48.48 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-2.3-llama3.1-70b name: Open LLM Leaderboard
MaziyarPanahi/calme-2.3-llama3.1-70b
This model is a fine-tuned version of the powerful meta-llama/Meta-Llama-3.1-70B-Instruct
, pushing the boundaries of natural language understanding and generation even further. My goal was to create a versatile and robust model that excels across a wide range of benchmarks and real-world applications.
Use Cases
This model is suitable for a wide range of applications, including but not limited to:
- Advanced question-answering systems
- Intelligent chatbots and virtual assistants
- Content generation and summarization
- Code generation and analysis
- Complex problem-solving and decision support
β‘ Quantized GGUF
coming soon!
π Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 40.30 |
IFEval (0-Shot) | 86.05 |
BBH (3-Shot) | 55.59 |
MATH Lvl 5 (4-Shot) | 21.45 |
GPQA (0-shot) | 12.53 |
MuSR (0-shot) | 17.74 |
MMLU-PRO (5-shot) | 48.48 |
This model uses ChatML
prompt template:
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>
{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
How to use
# Use a pipeline as a high-level helper
from transformers import pipeline
messages = [
{"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="MaziyarPanahi/calme-2.3-llama3.1-70b")
pipe(messages)
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("MaziyarPanahi/calme-2.3-llama3.1-70b")
model = AutoModelForCausalLM.from_pretrained("MaziyarPanahi/calme-2.3-llama3.1-70b")
Ethical Considerations
As with any large language model, users should be aware of potential biases and limitations. We recommend implementing appropriate safeguards and human oversight when deploying this model in production environments.
- Downloads last month
- 27