Edit model card
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

gpt4all-falcon - GGUF

Original model description:

license: apache-2.0 datasets: - nomic-ai/gpt4all-j-prompt-generations language: - en pipeline_tag: text-generation

Model Card for GPT4All-Falcon

An Apache-2 licensed chatbot trained over a massive curated corpus of assistant interactions including word problems, multi-turn dialogue, code, poems, songs, and stories.

Model Details

Model Description

This model has been finetuned from Falcon

  • Developed by: Nomic AI
  • Model Type: A finetuned Falcon 7B model on assistant style interaction data
  • Language(s) (NLP): English
  • License: Apache-2
  • Finetuned from model [optional]: Falcon

To download a model with a specific revision run

from transformers import AutoModelForCausalLM

model = AutoModelForCausalLM.from_pretrained("nomic-ai/gpt4all-falcon", trust_remote_code=True)

Downloading without specifying revision defaults to main/v1.0.

To use it for inference with Cuda, run

from transformers import AutoTokenizer, pipeline
import transformers
import torch

tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
model.to("cuda:0")

prompt = "Describe a painting of a falcon in a very detailed way." # Change this to your prompt
prompt_template = f"### Instruction: {prompt}\n### Response:"

tokens = tokenizer(prompt_template, return_tensors="pt").input_ids.to("cuda:0")
output = model.generate(input_ids=tokens, max_new_tokens=256, do_sample=True, temperature=0.8)

# Print the generated text
print(tokenizer.decode(output[0]))

Model Sources [optional]

Training Procedure

GPT4All is made possible by our compute partner Paperspace.

Trained on a DGX cluster with 8 A100 80GB GPUs for ~12 hours. Using Deepspeed + Accelerate, we use a global batch size of 256 with a learning rate of 2e-5. More information can be found in the repo.

Results

Results on common sense reasoning benchmarks

Model BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
GPT4All-J 6B v1.0 73.4 74.8 63.4 64.7 54.9 36.0 40.2 58.2
GPT4All-J v1.1-breezy 74.0 75.1 63.2 63.6 55.4 34.9 38.4 57.8
GPT4All-J v1.2-jazzy 74.8 74.9 63.6 63.8 56.6 35.3 41.0 58.6
GPT4All-J v1.3-groovy 73.6 74.3 63.8 63.5 57.7 35.0 38.8 58.1
GPT4All-J Lora 6B 68.6 75.8 66.2 63.5 56.4 35.7 40.2 58.1
GPT4All LLaMa Lora 7B 73.1 77.6 72.1 67.8 51.1 40.4 40.2 60.3
GPT4All 13B snoozy 83.3 79.2 75.0 71.3 60.9 44.2 43.4 65.3
GPT4All Falcon 77.6 79.8 74.9 70.1 67.9 43.4 42.6 65.2
Dolly 6B 68.8 77.3 67.6 63.9 62.9 38.7 41.2 60.1
Dolly 12B 56.7 75.4 71.0 62.2 64.6 38.5 40.4 58.4
Alpaca 7B 73.9 77.2 73.9 66.1 59.8 43.3 43.4 62.4
Alpaca Lora 7B 74.3 79.3 74.0 68.8 56.6 43.9 42.6 62.8
GPT-J 6.7B 65.4 76.2 66.2 64.1 62.2 36.6 38.2 58.4
LLama 7B 73.1 77.4 73.0 66.9 52.5 41.4 42.4 61.0
LLama 13B 68.5 79.1 76.2 70.1 60.0 44.6 42.2 63.0
Pythia 6.7B 63.5 76.3 64.0 61.1 61.3 35.2 37.2 57.0
Pythia 12B 67.7 76.6 67.3 63.8 63.9 34.8 38 58.9
Fastchat T5 81.5 64.6 46.3 61.8 49.3 33.3 39.4 53.7
Fastchat Vicuña 7B 76.6 77.2 70.7 67.3 53.5 41.2 40.8 61.0
Fastchat Vicuña 13B 81.5 76.8 73.3 66.7 57.4 42.7 43.6 63.1
StableVicuña RLHF 82.3 78.6 74.1 70.9 61.0 43.5 44.4 65.0
StableLM Tuned 62.5 71.2 53.6 54.8 52.4 31.1 33.4 51.3
StableLM Base 60.1 67.4 41.2 50.1 44.9 27.0 32.0 42.2
Koala 13B 76.5 77.9 72.6 68.8 54.3 41.0 42.8 62.0
Open Assistant Pythia 12B 67.9 78.0 68.1 65.0 64.2 40.4 43.2 61.0
Mosaic MPT7B 74.8 79.3 76.3 68.6 70.0 42.2 42.6 64.8
Mosaic mpt-instruct 74.3 80.4 77.2 67.8 72.2 44.6 43.0 65.6
Mosaic mpt-chat 77.1 78.2 74.5 67.5 69.4 43.3 44.2 64.9
Wizard 7B 78.4 77.2 69.9 66.5 56.8 40.5 42.6 61.7
Wizard 7B Uncensored 77.7 74.2 68.0 65.2 53.5 38.7 41.6 59.8
Wizard 13B Uncensored 78.4 75.5 72.1 69.5 57.5 40.4 44.0 62.5
GPT4-x-Vicuna-13b 81.3 75.0 75.2 65.0 58.7 43.9 43.6 62.2
Falcon 7b 73.6 80.7 76.3 67.3 71.0 43.3 44.4 65.2
text-davinci-003 88.1 83.8 83.4 75.8 83.9 63.9 51.0 75.7
Downloads last month
1,964
GGUF
Model size
7.22B params
Architecture
falcon

2-bit

3-bit

4-bit

5-bit

6-bit

Inference API
Unable to determine this model's library. Check the docs .