|
import torch |
|
from torch import tensor |
|
import torch.nn as nn |
|
import sys,os |
|
import math |
|
import sys |
|
sys.path.append(os.getcwd()) |
|
|
|
|
|
|
|
from lib.utils import initialize_weights |
|
|
|
|
|
from lib.models.common import Conv, SPP, Bottleneck, BottleneckCSP, Focus, Concat, Detect, SharpenConv |
|
from torch.nn import Upsample |
|
from lib.utils import check_anchor_order |
|
from lib.core.evaluate import SegmentationMetric |
|
from lib.utils.utils import time_synchronized |
|
|
|
""" |
|
MCnet_SPP = [ |
|
[ -1, Focus, [3, 32, 3]], |
|
[ -1, Conv, [32, 64, 3, 2]], |
|
[ -1, BottleneckCSP, [64, 64, 1]], |
|
[ -1, Conv, [64, 128, 3, 2]], |
|
[ -1, BottleneckCSP, [128, 128, 3]], |
|
[ -1, Conv, [128, 256, 3, 2]], |
|
[ -1, BottleneckCSP, [256, 256, 3]], |
|
[ -1, Conv, [256, 512, 3, 2]], |
|
[ -1, SPP, [512, 512, [5, 9, 13]]], |
|
[ -1, BottleneckCSP, [512, 512, 1, False]], |
|
[ -1, Conv,[512, 256, 1, 1]], |
|
[ -1, Upsample, [None, 2, 'nearest']], |
|
[ [-1, 6], Concat, [1]], |
|
[ -1, BottleneckCSP, [512, 256, 1, False]], |
|
[ -1, Conv, [256, 128, 1, 1]], |
|
[ -1, Upsample, [None, 2, 'nearest']], |
|
[ [-1,4], Concat, [1]], |
|
[ -1, BottleneckCSP, [256, 128, 1, False]], |
|
[ -1, Conv, [128, 128, 3, 2]], |
|
[ [-1, 14], Concat, [1]], |
|
[ -1, BottleneckCSP, [256, 256, 1, False]], |
|
[ -1, Conv, [256, 256, 3, 2]], |
|
[ [-1, 10], Concat, [1]], |
|
[ -1, BottleneckCSP, [512, 512, 1, False]], |
|
# [ [17, 20, 23], Detect, [1, [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]], [128, 256, 512]]], |
|
[ [17, 20, 23], Detect, [13, [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]], [128, 256, 512]]], |
|
[ 17, Conv, [128, 64, 3, 1]], |
|
[ -1, Upsample, [None, 2, 'nearest']], |
|
[ [-1,2], Concat, [1]], |
|
[ -1, BottleneckCSP, [128, 64, 1, False]], |
|
[ -1, Conv, [64, 32, 3, 1]], |
|
[ -1, Upsample, [None, 2, 'nearest']], |
|
[ -1, Conv, [32, 16, 3, 1]], |
|
[ -1, BottleneckCSP, [16, 8, 1, False]], |
|
[ -1, Upsample, [None, 2, 'nearest']], |
|
[ -1, SPP, [8, 2, [5, 9, 13]]] #segmentation output |
|
] |
|
# [2,6,3,9,5,13], [7,19,11,26,17,39], [28,64,44,103,61,183] |
|
|
|
MCnet_0 = [ |
|
[ -1, Focus, [3, 32, 3]], |
|
[ -1, Conv, [32, 64, 3, 2]], |
|
[ -1, BottleneckCSP, [64, 64, 1]], |
|
[ -1, Conv, [64, 128, 3, 2]], |
|
[ -1, BottleneckCSP, [128, 128, 3]], |
|
[ -1, Conv, [128, 256, 3, 2]], |
|
[ -1, BottleneckCSP, [256, 256, 3]], |
|
[ -1, Conv, [256, 512, 3, 2]], |
|
[ -1, SPP, [512, 512, [5, 9, 13]]], |
|
[ -1, BottleneckCSP, [512, 512, 1, False]], |
|
[ -1, Conv,[512, 256, 1, 1]], |
|
[ -1, Upsample, [None, 2, 'nearest']], |
|
[ [-1, 6], Concat, [1]], |
|
[ -1, BottleneckCSP, [512, 256, 1, False]], |
|
[ -1, Conv, [256, 128, 1, 1]], |
|
[ -1, Upsample, [None, 2, 'nearest']], |
|
[ [-1,4], Concat, [1]], |
|
[ -1, BottleneckCSP, [256, 128, 1, False]], |
|
[ -1, Conv, [128, 128, 3, 2]], |
|
[ [-1, 14], Concat, [1]], |
|
[ -1, BottleneckCSP, [256, 256, 1, False]], |
|
[ -1, Conv, [256, 256, 3, 2]], |
|
[ [-1, 10], Concat, [1]], |
|
[ -1, BottleneckCSP, [512, 512, 1, False]], |
|
[ [17, 20, 23], Detect, [1, [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]], [128, 256, 512]]], #Detect output 24 |
|
|
|
[ 16, Conv, [128, 64, 3, 1]], |
|
[ -1, Upsample, [None, 2, 'nearest']], |
|
[ [-1,2], Concat, [1]], |
|
[ -1, BottleneckCSP, [128, 64, 1, False]], |
|
[ -1, Conv, [64, 32, 3, 1]], |
|
[ -1, Upsample, [None, 2, 'nearest']], |
|
[ -1, Conv, [32, 16, 3, 1]], |
|
[ -1, BottleneckCSP, [16, 8, 1, False]], |
|
[ -1, Upsample, [None, 2, 'nearest']], |
|
[ -1, Conv, [8, 2, 3, 1]], #Driving area segmentation output |
|
|
|
[ 16, Conv, [128, 64, 3, 1]], |
|
[ -1, Upsample, [None, 2, 'nearest']], |
|
[ [-1,2], Concat, [1]], |
|
[ -1, BottleneckCSP, [128, 64, 1, False]], |
|
[ -1, Conv, [64, 32, 3, 1]], |
|
[ -1, Upsample, [None, 2, 'nearest']], |
|
[ -1, Conv, [32, 16, 3, 1]], |
|
[ -1, BottleneckCSP, [16, 8, 1, False]], |
|
[ -1, Upsample, [None, 2, 'nearest']], |
|
[ -1, Conv, [8, 2, 3, 1]], #Lane line segmentation output |
|
] |
|
|
|
|
|
# The lane line and the driving area segment branches share information with each other |
|
MCnet_share = [ |
|
[ -1, Focus, [3, 32, 3]], #0 |
|
[ -1, Conv, [32, 64, 3, 2]], #1 |
|
[ -1, BottleneckCSP, [64, 64, 1]], #2 |
|
[ -1, Conv, [64, 128, 3, 2]], #3 |
|
[ -1, BottleneckCSP, [128, 128, 3]], #4 |
|
[ -1, Conv, [128, 256, 3, 2]], #5 |
|
[ -1, BottleneckCSP, [256, 256, 3]], #6 |
|
[ -1, Conv, [256, 512, 3, 2]], #7 |
|
[ -1, SPP, [512, 512, [5, 9, 13]]], #8 |
|
[ -1, BottleneckCSP, [512, 512, 1, False]], #9 |
|
[ -1, Conv,[512, 256, 1, 1]], #10 |
|
[ -1, Upsample, [None, 2, 'nearest']], #11 |
|
[ [-1, 6], Concat, [1]], #12 |
|
[ -1, BottleneckCSP, [512, 256, 1, False]], #13 |
|
[ -1, Conv, [256, 128, 1, 1]], #14 |
|
[ -1, Upsample, [None, 2, 'nearest']], #15 |
|
[ [-1,4], Concat, [1]], #16 |
|
[ -1, BottleneckCSP, [256, 128, 1, False]], #17 |
|
[ -1, Conv, [128, 128, 3, 2]], #18 |
|
[ [-1, 14], Concat, [1]], #19 |
|
[ -1, BottleneckCSP, [256, 256, 1, False]], #20 |
|
[ -1, Conv, [256, 256, 3, 2]], #21 |
|
[ [-1, 10], Concat, [1]], #22 |
|
[ -1, BottleneckCSP, [512, 512, 1, False]], #23 |
|
[ [17, 20, 23], Detect, [1, [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]], [128, 256, 512]]], #Detect output 24 |
|
|
|
[ 16, Conv, [256, 64, 3, 1]], #25 |
|
[ -1, Upsample, [None, 2, 'nearest']], #26 |
|
[ [-1,2], Concat, [1]], #27 |
|
[ -1, BottleneckCSP, [128, 64, 1, False]], #28 |
|
[ -1, Conv, [64, 32, 3, 1]], #29 |
|
[ -1, Upsample, [None, 2, 'nearest']], #30 |
|
[ -1, Conv, [32, 16, 3, 1]], #31 |
|
[ -1, BottleneckCSP, [16, 8, 1, False]], #32 driving area segment neck |
|
|
|
[ 16, Conv, [256, 64, 3, 1]], #33 |
|
[ -1, Upsample, [None, 2, 'nearest']], #34 |
|
[ [-1,2], Concat, [1]], #35 |
|
[ -1, BottleneckCSP, [128, 64, 1, False]], #36 |
|
[ -1, Conv, [64, 32, 3, 1]], #37 |
|
[ -1, Upsample, [None, 2, 'nearest']], #38 |
|
[ -1, Conv, [32, 16, 3, 1]], #39 |
|
[ -1, BottleneckCSP, [16, 8, 1, False]], #40 lane line segment neck |
|
|
|
[ [31,39], Concat, [1]], #41 |
|
[ -1, Conv, [32, 8, 3, 1]], #42 Share_Block |
|
|
|
|
|
[ [32,42], Concat, [1]], #43 |
|
[ -1, Upsample, [None, 2, 'nearest']], #44 |
|
[ -1, Conv, [16, 2, 3, 1]], #45 Driving area segmentation output |
|
|
|
|
|
[ [40,42], Concat, [1]], #46 |
|
[ -1, Upsample, [None, 2, 'nearest']], #47 |
|
[ -1, Conv, [16, 2, 3, 1]] #48Lane line segmentation output |
|
] |
|
|
|
# The lane line and the driving area segment branches without share information with each other |
|
MCnet_no_share = [ |
|
[ -1, Focus, [3, 32, 3]], #0 |
|
[ -1, Conv, [32, 64, 3, 2]], #1 |
|
[ -1, BottleneckCSP, [64, 64, 1]], #2 |
|
[ -1, Conv, [64, 128, 3, 2]], #3 |
|
[ -1, BottleneckCSP, [128, 128, 3]], #4 |
|
[ -1, Conv, [128, 256, 3, 2]], #5 |
|
[ -1, BottleneckCSP, [256, 256, 3]], #6 |
|
[ -1, Conv, [256, 512, 3, 2]], #7 |
|
[ -1, SPP, [512, 512, [5, 9, 13]]], #8 |
|
[ -1, BottleneckCSP, [512, 512, 1, False]], #9 |
|
[ -1, Conv,[512, 256, 1, 1]], #10 |
|
[ -1, Upsample, [None, 2, 'nearest']], #11 |
|
[ [-1, 6], Concat, [1]], #12 |
|
[ -1, BottleneckCSP, [512, 256, 1, False]], #13 |
|
[ -1, Conv, [256, 128, 1, 1]], #14 |
|
[ -1, Upsample, [None, 2, 'nearest']], #15 |
|
[ [-1,4], Concat, [1]], #16 |
|
[ -1, BottleneckCSP, [256, 128, 1, False]], #17 |
|
[ -1, Conv, [128, 128, 3, 2]], #18 |
|
[ [-1, 14], Concat, [1]], #19 |
|
[ -1, BottleneckCSP, [256, 256, 1, False]], #20 |
|
[ -1, Conv, [256, 256, 3, 2]], #21 |
|
[ [-1, 10], Concat, [1]], #22 |
|
[ -1, BottleneckCSP, [512, 512, 1, False]], #23 |
|
[ [17, 20, 23], Detect, [1, [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]], [128, 256, 512]]], #Detect output 24 |
|
|
|
[ 16, Conv, [256, 64, 3, 1]], #25 |
|
[ -1, Upsample, [None, 2, 'nearest']], #26 |
|
[ [-1,2], Concat, [1]], #27 |
|
[ -1, BottleneckCSP, [128, 64, 1, False]], #28 |
|
[ -1, Conv, [64, 32, 3, 1]], #29 |
|
[ -1, Upsample, [None, 2, 'nearest']], #30 |
|
[ -1, Conv, [32, 16, 3, 1]], #31 |
|
[ -1, BottleneckCSP, [16, 8, 1, False]], #32 driving area segment neck |
|
[ -1, Upsample, [None, 2, 'nearest']], #33 |
|
[ -1, Conv, [8, 3, 3, 1]], #34 Driving area segmentation output |
|
|
|
[ 16, Conv, [256, 64, 3, 1]], #35 |
|
[ -1, Upsample, [None, 2, 'nearest']], #36 |
|
[ [-1,2], Concat, [1]], #37 |
|
[ -1, BottleneckCSP, [128, 64, 1, False]], #38 |
|
[ -1, Conv, [64, 32, 3, 1]], #39 |
|
[ -1, Upsample, [None, 2, 'nearest']], #40 |
|
[ -1, Conv, [32, 16, 3, 1]], #41 |
|
[ -1, BottleneckCSP, [16, 8, 1, False]], #42 lane line segment neck |
|
[ -1, Upsample, [None, 2, 'nearest']], #43 |
|
[ -1, Conv, [8, 2, 3, 1]] #44 Lane line segmentation output |
|
] |
|
|
|
MCnet_feedback = [ |
|
[ -1, Focus, [3, 32, 3]], #0 |
|
[ -1, Conv, [32, 64, 3, 2]], #1 |
|
[ -1, BottleneckCSP, [64, 64, 1]], #2 |
|
[ -1, Conv, [64, 128, 3, 2]], #3 |
|
[ -1, BottleneckCSP, [128, 128, 3]], #4 |
|
[ -1, Conv, [128, 256, 3, 2]], #5 |
|
[ -1, BottleneckCSP, [256, 256, 3]], #6 |
|
[ -1, Conv, [256, 512, 3, 2]], #7 |
|
[ -1, SPP, [512, 512, [5, 9, 13]]], #8 |
|
[ -1, BottleneckCSP, [512, 512, 1, False]], #9 |
|
[ -1, Conv,[512, 256, 1, 1]], #10 |
|
[ -1, Upsample, [None, 2, 'nearest']], #11 |
|
[ [-1, 6], Concat, [1]], #12 |
|
[ -1, BottleneckCSP, [512, 256, 1, False]], #13 |
|
[ -1, Conv, [256, 128, 1, 1]], #14 |
|
[ -1, Upsample, [None, 2, 'nearest']], #15 |
|
[ [-1,4], Concat, [1]], #16 |
|
[ -1, BottleneckCSP, [256, 128, 1, False]], #17 |
|
[ -1, Conv, [128, 128, 3, 2]], #18 |
|
[ [-1, 14], Concat, [1]], #19 |
|
[ -1, BottleneckCSP, [256, 256, 1, False]], #20 |
|
[ -1, Conv, [256, 256, 3, 2]], #21 |
|
[ [-1, 10], Concat, [1]], #22 |
|
[ -1, BottleneckCSP, [512, 512, 1, False]], #23 |
|
[ [17, 20, 23], Detect, [1, [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]], [128, 256, 512]]], #Detect output 24 |
|
|
|
[ 16, Conv, [256, 128, 3, 1]], #25 |
|
[ -1, Upsample, [None, 2, 'nearest']], #26 |
|
[ -1, BottleneckCSP, [128, 64, 1, False]], #28 |
|
[ -1, Conv, [64, 32, 3, 1]], #29 |
|
[ -1, Upsample, [None, 2, 'nearest']], #30 |
|
[ -1, Conv, [32, 16, 3, 1]], #31 |
|
[ -1, BottleneckCSP, [16, 8, 1, False]], #32 driving area segment neck |
|
[ -1, Upsample, [None, 2, 'nearest']], #33 |
|
[ -1, Conv, [8, 2, 3, 1]], #34 Driving area segmentation output |
|
|
|
[ 16, Conv, [256, 128, 3, 1]], #35 |
|
[ -1, Upsample, [None, 2, 'nearest']], #36 |
|
[ -1, BottleneckCSP, [128, 64, 1, False]], #38 |
|
[ -1, Conv, [64, 32, 3, 1]], #39 |
|
[ -1, Upsample, [None, 2, 'nearest']], #40 |
|
[ -1, Conv, [32, 16, 3, 1]], #41 |
|
[ -1, BottleneckCSP, [16, 8, 1, False]], #42 lane line segment neck |
|
[ -1, Upsample, [None, 2, 'nearest']], #43 |
|
[ -1, Conv, [8, 2, 3, 1]] #44 Lane line segmentation output |
|
] |
|
|
|
|
|
MCnet_Da_feedback1 = [ |
|
[46, 26, 35], #Det_out_idx, Da_Segout_idx, LL_Segout_idx |
|
[ -1, Focus, [3, 32, 3]], #0 |
|
[ -1, Conv, [32, 64, 3, 2]], #1 |
|
[ -1, BottleneckCSP, [64, 64, 1]], #2 |
|
[ -1, Conv, [64, 128, 3, 2]], #3 |
|
[ -1, BottleneckCSP, [128, 128, 3]], #4 |
|
[ -1, Conv, [128, 256, 3, 2]], #5 |
|
[ -1, BottleneckCSP, [256, 256, 3]], #6 |
|
[ -1, Conv, [256, 512, 3, 2]], #7 |
|
[ -1, SPP, [512, 512, [5, 9, 13]]], #8 |
|
[ -1, BottleneckCSP, [512, 512, 1, False]], #9 |
|
[ -1, Conv,[512, 256, 1, 1]], #10 |
|
[ -1, Upsample, [None, 2, 'nearest']], #11 |
|
[ [-1, 6], Concat, [1]], #12 |
|
[ -1, BottleneckCSP, [512, 256, 1, False]], #13 |
|
[ -1, Conv, [256, 128, 1, 1]], #14 |
|
[ -1, Upsample, [None, 2, 'nearest']], #15 |
|
[ [-1,4], Concat, [1]], #16 backbone+fpn |
|
[ -1,Conv,[256,256,1,1]], #17 |
|
|
|
|
|
[ 16, Conv, [256, 128, 3, 1]], #18 |
|
[ -1, Upsample, [None, 2, 'nearest']], #19 |
|
[ -1, BottleneckCSP, [128, 64, 1, False]], #20 |
|
[ -1, Conv, [64, 32, 3, 1]], #21 |
|
[ -1, Upsample, [None, 2, 'nearest']], #22 |
|
[ -1, Conv, [32, 16, 3, 1]], #23 |
|
[ -1, BottleneckCSP, [16, 8, 1, False]], #24 driving area segment neck |
|
[ -1, Upsample, [None, 2, 'nearest']], #25 |
|
[ -1, Conv, [8, 2, 3, 1]], #26 Driving area segmentation output |
|
|
|
|
|
[ 16, Conv, [256, 128, 3, 1]], #27 |
|
[ -1, Upsample, [None, 2, 'nearest']], #28 |
|
[ -1, BottleneckCSP, [128, 64, 1, False]], #29 |
|
[ -1, Conv, [64, 32, 3, 1]], #30 |
|
[ -1, Upsample, [None, 2, 'nearest']], #31 |
|
[ -1, Conv, [32, 16, 3, 1]], #32 |
|
[ -1, BottleneckCSP, [16, 8, 1, False]], #33 lane line segment neck |
|
[ -1, Upsample, [None, 2, 'nearest']], #34 |
|
[ -1, Conv, [8, 2, 3, 1]], #35Lane line segmentation output |
|
|
|
|
|
[ 23, Conv, [16, 16, 3, 2]], #36 |
|
[ -1, Conv, [16, 32, 3, 2]], #2 times 2xdownsample 37 |
|
|
|
[ [-1,17], Concat, [1]], #38 |
|
[ -1, BottleneckCSP, [288, 128, 1, False]], #39 |
|
[ -1, Conv, [128, 128, 3, 2]], #40 |
|
[ [-1, 14], Concat, [1]], #41 |
|
[ -1, BottleneckCSP, [256, 256, 1, False]], #42 |
|
[ -1, Conv, [256, 256, 3, 2]], #43 |
|
[ [-1, 10], Concat, [1]], #44 |
|
[ -1, BottleneckCSP, [512, 512, 1, False]], #45 |
|
[ [39, 42, 45], Detect, [1, [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]], [128, 256, 512]]] #Detect output 46 |
|
] |
|
|
|
|
|
|
|
# The lane line and the driving area segment branches share information with each other and feedback to det_head |
|
MCnet_Da_feedback2 = [ |
|
[47, 26, 35], #Det_out_idx, Da_Segout_idx, LL_Segout_idx |
|
[25, 28, 31, 33], #layer in Da_branch to do SAD |
|
[34, 37, 40, 42], #layer in LL_branch to do SAD |
|
[ -1, Focus, [3, 32, 3]], #0 |
|
[ -1, Conv, [32, 64, 3, 2]], #1 |
|
[ -1, BottleneckCSP, [64, 64, 1]], #2 |
|
[ -1, Conv, [64, 128, 3, 2]], #3 |
|
[ -1, BottleneckCSP, [128, 128, 3]], #4 |
|
[ -1, Conv, [128, 256, 3, 2]], #5 |
|
[ -1, BottleneckCSP, [256, 256, 3]], #6 |
|
[ -1, Conv, [256, 512, 3, 2]], #7 |
|
[ -1, SPP, [512, 512, [5, 9, 13]]], #8 |
|
[ -1, BottleneckCSP, [512, 512, 1, False]], #9 |
|
[ -1, Conv,[512, 256, 1, 1]], #10 |
|
[ -1, Upsample, [None, 2, 'nearest']], #11 |
|
[ [-1, 6], Concat, [1]], #12 |
|
[ -1, BottleneckCSP, [512, 256, 1, False]], #13 |
|
[ -1, Conv, [256, 128, 1, 1]], #14 |
|
[ -1, Upsample, [None, 2, 'nearest']], #15 |
|
[ [-1,4], Concat, [1]], #16 backbone+fpn |
|
[ -1,Conv,[256,256,1,1]], #17 |
|
|
|
|
|
[ 16, Conv, [256, 128, 3, 1]], #18 |
|
[ -1, Upsample, [None, 2, 'nearest']], #19 |
|
[ -1, BottleneckCSP, [128, 64, 1, False]], #20 |
|
[ -1, Conv, [64, 32, 3, 1]], #21 |
|
[ -1, Upsample, [None, 2, 'nearest']], #22 |
|
[ -1, Conv, [32, 16, 3, 1]], #23 |
|
[ -1, BottleneckCSP, [16, 8, 1, False]], #24 driving area segment neck |
|
[ -1, Upsample, [None, 2, 'nearest']], #25 |
|
[ -1, Conv, [8, 2, 3, 1]], #26 Driving area segmentation output |
|
|
|
|
|
[ 16, Conv, [256, 128, 3, 1]], #27 |
|
[ -1, Upsample, [None, 2, 'nearest']], #28 |
|
[ -1, BottleneckCSP, [128, 64, 1, False]], #29 |
|
[ -1, Conv, [64, 32, 3, 1]], #30 |
|
[ -1, Upsample, [None, 2, 'nearest']], #31 |
|
[ -1, Conv, [32, 16, 3, 1]], #32 |
|
[ -1, BottleneckCSP, [16, 8, 1, False]], #33 lane line segment neck |
|
[ -1, Upsample, [None, 2, 'nearest']], #34 |
|
[ -1, Conv, [8, 2, 3, 1]], #35Lane line segmentation output |
|
|
|
|
|
[ 23, Conv, [16, 64, 3, 2]], #36 |
|
[ -1, Conv, [64, 256, 3, 2]], #2 times 2xdownsample 37 |
|
|
|
[ [-1,17], Concat, [1]], #38 |
|
|
|
[-1, Conv, [512, 256, 3, 1]], #39 |
|
[ -1, BottleneckCSP, [256, 128, 1, False]], #40 |
|
[ -1, Conv, [128, 128, 3, 2]], #41 |
|
[ [-1, 14], Concat, [1]], #42 |
|
[ -1, BottleneckCSP, [256, 256, 1, False]], #43 |
|
[ -1, Conv, [256, 256, 3, 2]], #44 |
|
[ [-1, 10], Concat, [1]], #45 |
|
[ -1, BottleneckCSP, [512, 512, 1, False]], #46 |
|
[ [40, 42, 45], Detect, [1, [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]], [128, 256, 512]]] #Detect output 47 |
|
] |
|
|
|
MCnet_share1 = [ |
|
[24, 33, 45], #Det_out_idx, Da_Segout_idx, LL_Segout_idx |
|
[25, 28, 31, 33], #layer in Da_branch to do SAD |
|
[34, 37, 40, 42], #layer in LL_branch to do SAD |
|
[ -1, Focus, [3, 32, 3]], #0 |
|
[ -1, Conv, [32, 64, 3, 2]], #1 |
|
[ -1, BottleneckCSP, [64, 64, 1]], #2 |
|
[ -1, Conv, [64, 128, 3, 2]], #3 |
|
[ -1, BottleneckCSP, [128, 128, 3]], #4 |
|
[ -1, Conv, [128, 256, 3, 2]], #5 |
|
[ -1, BottleneckCSP, [256, 256, 3]], #6 |
|
[ -1, Conv, [256, 512, 3, 2]], #7 |
|
[ -1, SPP, [512, 512, [5, 9, 13]]], #8 |
|
[ -1, BottleneckCSP, [512, 512, 1, False]], #9 |
|
[ -1, Conv,[512, 256, 1, 1]], #10 |
|
[ -1, Upsample, [None, 2, 'nearest']], #11 |
|
[ [-1, 6], Concat, [1]], #12 |
|
[ -1, BottleneckCSP, [512, 256, 1, False]], #13 |
|
[ -1, Conv, [256, 128, 1, 1]], #14 |
|
[ -1, Upsample, [None, 2, 'nearest']], #15 |
|
[ [-1,4], Concat, [1]], #16 |
|
[ -1, BottleneckCSP, [256, 128, 1, False]], #17 |
|
[ -1, Conv, [128, 128, 3, 2]], #18 |
|
[ [-1, 14], Concat, [1]], #19 |
|
[ -1, BottleneckCSP, [256, 256, 1, False]], #20 |
|
[ -1, Conv, [256, 256, 3, 2]], #21 |
|
[ [-1, 10], Concat, [1]], #22 |
|
[ -1, BottleneckCSP, [512, 512, 1, False]], #23 |
|
[ [17, 20, 23], Detect, [1, [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]], [128, 256, 512]]], #Detect output 24 |
|
|
|
[ 16, Conv, [256, 128, 3, 1]], #25 |
|
[ -1, Upsample, [None, 2, 'nearest']], #26 |
|
[ -1, BottleneckCSP, [128, 64, 1, False]], #27 |
|
[ -1, Conv, [64, 32, 3, 1]], #28 |
|
[ -1, Upsample, [None, 2, 'nearest']], #29 |
|
[ -1, Conv, [32, 16, 3, 1]], #30 |
|
|
|
[ -1, BottleneckCSP, [16, 8, 1, False]], #31 driving area segment neck |
|
[ -1, Upsample, [None, 2, 'nearest']], #32 |
|
[ -1, Conv, [8, 2, 3, 1]], #33 Driving area segmentation output |
|
|
|
[ 16, Conv, [256, 128, 3, 1]], #34 |
|
[ -1, Upsample, [None, 2, 'nearest']], #35 |
|
[ -1, BottleneckCSP, [128, 64, 1, False]], #36 |
|
[ -1, Conv, [64, 32, 3, 1]], #37 |
|
[ -1, Upsample, [None, 2, 'nearest']], #38 |
|
[ -1, Conv, [32, 16, 3, 1]], #39 |
|
|
|
[ 30, SharpenConv, [16,16, 3, 1]], #40 |
|
[ -1, Conv, [16, 16, 3, 1]], #41 |
|
[ [-1, 39], Concat, [1]], #42 |
|
[ -1, BottleneckCSP, [32, 8, 1, False]], #43 lane line segment neck |
|
[ -1, Upsample, [None, 2, 'nearest']], #44 |
|
[ -1, Conv, [8, 2, 3, 1]] #45 Lane line segmentation output |
|
]""" |
|
|
|
|
|
|
|
YOLOP = [ |
|
[24, 33, 42], |
|
[ -1, Focus, [3, 32, 3]], |
|
[ -1, Conv, [32, 64, 3, 2]], |
|
[ -1, BottleneckCSP, [64, 64, 1]], |
|
[ -1, Conv, [64, 128, 3, 2]], |
|
[ -1, BottleneckCSP, [128, 128, 3]], |
|
[ -1, Conv, [128, 256, 3, 2]], |
|
[ -1, BottleneckCSP, [256, 256, 3]], |
|
[ -1, Conv, [256, 512, 3, 2]], |
|
[ -1, SPP, [512, 512, [5, 9, 13]]], |
|
[ -1, BottleneckCSP, [512, 512, 1, False]], |
|
[ -1, Conv,[512, 256, 1, 1]], |
|
[ -1, Upsample, [None, 2, 'nearest']], |
|
[ [-1, 6], Concat, [1]], |
|
[ -1, BottleneckCSP, [512, 256, 1, False]], |
|
[ -1, Conv, [256, 128, 1, 1]], |
|
[ -1, Upsample, [None, 2, 'nearest']], |
|
[ [-1,4], Concat, [1]], |
|
|
|
[ -1, BottleneckCSP, [256, 128, 1, False]], |
|
[ -1, Conv, [128, 128, 3, 2]], |
|
[ [-1, 14], Concat, [1]], |
|
[ -1, BottleneckCSP, [256, 256, 1, False]], |
|
[ -1, Conv, [256, 256, 3, 2]], |
|
[ [-1, 10], Concat, [1]], |
|
[ -1, BottleneckCSP, [512, 512, 1, False]], |
|
[ [17, 20, 23], Detect, [1, [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]], [128, 256, 512]]], |
|
|
|
[ 16, Conv, [256, 128, 3, 1]], |
|
[ -1, Upsample, [None, 2, 'nearest']], |
|
[ -1, BottleneckCSP, [128, 64, 1, False]], |
|
[ -1, Conv, [64, 32, 3, 1]], |
|
[ -1, Upsample, [None, 2, 'nearest']], |
|
[ -1, Conv, [32, 16, 3, 1]], |
|
[ -1, BottleneckCSP, [16, 8, 1, False]], |
|
[ -1, Upsample, [None, 2, 'nearest']], |
|
[ -1, Conv, [8, 2, 3, 1]], |
|
|
|
[ 16, Conv, [256, 128, 3, 1]], |
|
[ -1, Upsample, [None, 2, 'nearest']], |
|
[ -1, BottleneckCSP, [128, 64, 1, False]], |
|
[ -1, Conv, [64, 32, 3, 1]], |
|
[ -1, Upsample, [None, 2, 'nearest']], |
|
[ -1, Conv, [32, 16, 3, 1]], |
|
[ -1, BottleneckCSP, [16, 8, 1, False]], |
|
[ -1, Upsample, [None, 2, 'nearest']], |
|
[ -1, Conv, [8, 2, 3, 1]] |
|
] |
|
|
|
|
|
class MCnet(nn.Module): |
|
def __init__(self, block_cfg, **kwargs): |
|
super(MCnet, self).__init__() |
|
layers, save= [], [] |
|
self.nc = 1 |
|
self.detector_index = -1 |
|
self.det_out_idx = block_cfg[0][0] |
|
self.seg_out_idx = block_cfg[0][1:] |
|
|
|
|
|
|
|
for i, (from_, block, args) in enumerate(block_cfg[1:]): |
|
block = eval(block) if isinstance(block, str) else block |
|
if block is Detect: |
|
self.detector_index = i |
|
block_ = block(*args) |
|
block_.index, block_.from_ = i, from_ |
|
layers.append(block_) |
|
save.extend(x % i for x in ([from_] if isinstance(from_, int) else from_) if x != -1) |
|
assert self.detector_index == block_cfg[0][0] |
|
|
|
self.model, self.save = nn.Sequential(*layers), sorted(save) |
|
self.names = [str(i) for i in range(self.nc)] |
|
|
|
|
|
Detector = self.model[self.detector_index] |
|
if isinstance(Detector, Detect): |
|
s = 128 |
|
|
|
|
|
with torch.no_grad(): |
|
model_out = self.forward(torch.zeros(1, 3, s, s)) |
|
detects, _, _= model_out |
|
Detector.stride = torch.tensor([s / x.shape[-2] for x in detects]) |
|
|
|
Detector.anchors /= Detector.stride.view(-1, 1, 1) |
|
check_anchor_order(Detector) |
|
self.stride = Detector.stride |
|
self._initialize_biases() |
|
|
|
initialize_weights(self) |
|
|
|
def forward(self, x): |
|
cache = [] |
|
out = [] |
|
det_out = None |
|
Da_fmap = [] |
|
LL_fmap = [] |
|
for i, block in enumerate(self.model): |
|
if block.from_ != -1: |
|
x = cache[block.from_] if isinstance(block.from_, int) else [x if j == -1 else cache[j] for j in block.from_] |
|
x = block(x) |
|
if i in self.seg_out_idx: |
|
m=nn.Sigmoid() |
|
out.append(m(x)) |
|
if i == self.detector_index: |
|
det_out = x |
|
cache.append(x if block.index in self.save else None) |
|
out.insert(0,det_out) |
|
return out |
|
|
|
|
|
def _initialize_biases(self, cf=None): |
|
|
|
|
|
|
|
m = self.model[self.detector_index] |
|
for mi, s in zip(m.m, m.stride): |
|
b = mi.bias.view(m.na, -1) |
|
b[:, 4] += math.log(8 / (640 / s) ** 2) |
|
b[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) |
|
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) |
|
|
|
def get_net(cfg, **kwargs): |
|
m_block_cfg = YOLOP |
|
model = MCnet(m_block_cfg, **kwargs) |
|
return model |
|
|
|
|
|
if __name__ == "__main__": |
|
from torch.utils.tensorboard import SummaryWriter |
|
model = get_net(False) |
|
input_ = torch.randn((1, 3, 256, 256)) |
|
gt_ = torch.rand((1, 2, 256, 256)) |
|
metric = SegmentationMetric(2) |
|
model_out,SAD_out = model(input_) |
|
detects, dring_area_seg, lane_line_seg = model_out |
|
Da_fmap, LL_fmap = SAD_out |
|
for det in detects: |
|
print(det.shape) |
|
print(dring_area_seg.shape) |
|
print(lane_line_seg.shape) |
|
|
|
|