|
import argparse |
|
import os, sys |
|
import shutil |
|
import time |
|
from pathlib import Path |
|
import imageio |
|
|
|
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) |
|
sys.path.append(BASE_DIR) |
|
|
|
print(sys.path) |
|
import cv2 |
|
import torch |
|
import torch.backends.cudnn as cudnn |
|
from numpy import random |
|
import scipy.special |
|
import numpy as np |
|
import torchvision.transforms as transforms |
|
import PIL.Image as image |
|
|
|
from lib.config import cfg |
|
from lib.config import update_config |
|
from lib.utils.utils import create_logger, select_device, time_synchronized |
|
from lib.models import get_net |
|
from lib.dataset import LoadImages, LoadStreams |
|
from lib.core.general import non_max_suppression, scale_coords |
|
from lib.utils import plot_one_box,show_seg_result |
|
from lib.core.function import AverageMeter |
|
from lib.core.postprocess import morphological_process |
|
from tqdm import tqdm |
|
normalize = transforms.Normalize( |
|
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] |
|
) |
|
|
|
transform=transforms.Compose([ |
|
transforms.ToTensor(), |
|
normalize, |
|
]) |
|
|
|
|
|
def detect(cfg,opt): |
|
|
|
logger, final_output_dir, tb_log_dir = create_logger( |
|
cfg, cfg.LOG_DIR, 'demo') |
|
|
|
device = select_device(logger,opt.device) |
|
if os.path.exists(opt.save_dir): |
|
shutil.rmtree(opt.save_dir) |
|
os.makedirs(opt.save_dir) |
|
half = device.type != 'cpu' |
|
|
|
|
|
model = get_net(cfg) |
|
checkpoint = torch.load(opt.weights, map_location= device) |
|
model.load_state_dict(checkpoint['state_dict']) |
|
model = model.to(device) |
|
if half: |
|
model.half() |
|
|
|
|
|
if opt.source.isnumeric(): |
|
cudnn.benchmark = True |
|
dataset = LoadStreams(opt.source, img_size=opt.img_size) |
|
bs = len(dataset) |
|
else: |
|
dataset = LoadImages(opt.source, img_size=opt.img_size) |
|
bs = 1 |
|
|
|
|
|
|
|
names = model.module.names if hasattr(model, 'module') else model.names |
|
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))] |
|
|
|
|
|
|
|
t0 = time.time() |
|
|
|
vid_path, vid_writer = None, None |
|
img = torch.zeros((1, 3, opt.img_size, opt.img_size), device=device) |
|
_ = model(img.half() if half else img) if device.type != 'cpu' else None |
|
model.eval() |
|
|
|
inf_time = AverageMeter() |
|
nms_time = AverageMeter() |
|
|
|
for i, (path, img, img_det, vid_cap,shapes) in tqdm(enumerate(dataset),total = len(dataset)): |
|
img = transform(img).to(device) |
|
img = img.half() if half else img.float() |
|
if img.ndimension() == 3: |
|
img = img.unsqueeze(0) |
|
|
|
t1 = time_synchronized() |
|
det_out, da_seg_out,ll_seg_out= model(img) |
|
t2 = time_synchronized() |
|
|
|
inf_out,train_out = det_out |
|
inf_time.update(t2-t1,img.size(0)) |
|
|
|
|
|
t3 = time_synchronized() |
|
det_pred = non_max_suppression(inf_out, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False) |
|
t4 = time_synchronized() |
|
|
|
nms_time.update(t4-t3,img.size(0)) |
|
det=det_pred[0] |
|
|
|
save_path = str(opt.save_dir +'/'+ Path(path).name) if dataset.mode != 'stream' else str(opt.save_dir + '/' + "web.mp4") |
|
|
|
_, _, height, width = img.shape |
|
h,w,_=img_det.shape |
|
pad_w, pad_h = shapes[1][1] |
|
pad_w = int(pad_w) |
|
pad_h = int(pad_h) |
|
ratio = shapes[1][0][1] |
|
|
|
da_predict = da_seg_out[:, :, pad_h:(height-pad_h),pad_w:(width-pad_w)] |
|
da_seg_mask = torch.nn.functional.interpolate(da_predict, scale_factor=int(1/ratio), mode='bilinear') |
|
_, da_seg_mask = torch.max(da_seg_mask, 1) |
|
da_seg_mask = da_seg_mask.int().squeeze().cpu().numpy() |
|
|
|
|
|
ll_predict = ll_seg_out[:, :,pad_h:(height-pad_h),pad_w:(width-pad_w)] |
|
ll_seg_mask = torch.nn.functional.interpolate(ll_predict, scale_factor=int(1/ratio), mode='bilinear') |
|
_, ll_seg_mask = torch.max(ll_seg_mask, 1) |
|
ll_seg_mask = ll_seg_mask.int().squeeze().cpu().numpy() |
|
|
|
img_det = show_seg_result(img_det, (da_seg_mask, ll_seg_mask), _, _, is_demo=True) |
|
|
|
if len(det): |
|
det[:,:4] = scale_coords(img.shape[2:],det[:,:4],img_det.shape).round() |
|
for *xyxy,conf,cls in reversed(det): |
|
label_det_pred = f'{names[int(cls)]} {conf:.2f}' |
|
plot_one_box(xyxy, img_det , label=label_det_pred, color=colors[int(cls)], line_thickness=2) |
|
|
|
if dataset.mode == 'images': |
|
cv2.imwrite(save_path,img_det) |
|
|
|
elif dataset.mode == 'video': |
|
if vid_path != save_path: |
|
vid_path = save_path |
|
if isinstance(vid_writer, cv2.VideoWriter): |
|
vid_writer.release() |
|
|
|
fourcc = 'mp4v' |
|
fps = vid_cap.get(cv2.CAP_PROP_FPS) |
|
h,w,_=img_det.shape |
|
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h)) |
|
vid_writer.write(img_det) |
|
|
|
else: |
|
cv2.imshow('image', img_det) |
|
cv2.waitKey(1) |
|
|
|
print('Results saved to %s' % Path(opt.save_dir)) |
|
print('Done. (%.3fs)' % (time.time() - t0)) |
|
print('inf : (%.4fs/frame) nms : (%.4fs/frame)' % (inf_time.avg,nms_time.avg)) |
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--weights', nargs='+', type=str, default='weights/End-to-end.pth', help='model.pth path(s)') |
|
parser.add_argument('--source', type=str, default='inference/images', help='source') |
|
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') |
|
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold') |
|
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS') |
|
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
parser.add_argument('--save-dir', type=str, default='inference/output', help='directory to save results') |
|
parser.add_argument('--augment', action='store_true', help='augmented inference') |
|
parser.add_argument('--update', action='store_true', help='update all models') |
|
opt = parser.parse_args() |
|
with torch.no_grad(): |
|
detect(cfg,opt) |
|
|