|
import argparse |
|
import os, sys |
|
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) |
|
sys.path.append(BASE_DIR) |
|
|
|
import pprint |
|
import torch |
|
import torch.nn.parallel |
|
import torch.backends.cudnn as cudnn |
|
import torch.optim |
|
import torch.utils.data |
|
import torch.utils.data.distributed |
|
import torchvision.transforms as transforms |
|
import numpy as np |
|
from lib.utils import DataLoaderX |
|
from tensorboardX import SummaryWriter |
|
|
|
import lib.dataset as dataset |
|
from lib.config import cfg |
|
from lib.config import update_config |
|
from lib.core.loss import get_loss |
|
from lib.core.function import validate |
|
from lib.core.general import fitness |
|
from lib.models import get_net |
|
from lib.utils.utils import create_logger, select_device |
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='Test Multitask network') |
|
|
|
|
|
parser.add_argument('--modelDir', |
|
help='model directory', |
|
type=str, |
|
default='') |
|
parser.add_argument('--logDir', |
|
help='log directory', |
|
type=str, |
|
default='runs/') |
|
parser.add_argument('--weights', nargs='+', type=str, default='/data2/zwt/wd/YOLOP/runs/BddDataset/detect_and_segbranch_whole/epoch-169.pth', help='model.pth path(s)') |
|
parser.add_argument('--conf_thres', type=float, default=0.001, help='object confidence threshold') |
|
parser.add_argument('--iou_thres', type=float, default=0.6, help='IOU threshold for NMS') |
|
args = parser.parse_args() |
|
|
|
return args |
|
|
|
def main(): |
|
|
|
args = parse_args() |
|
update_config(cfg, args) |
|
|
|
|
|
|
|
|
|
logger, final_output_dir, tb_log_dir = create_logger( |
|
cfg, cfg.LOG_DIR, 'test') |
|
|
|
logger.info(pprint.pformat(args)) |
|
logger.info(cfg) |
|
|
|
writer_dict = { |
|
'writer': SummaryWriter(log_dir=tb_log_dir), |
|
'train_global_steps': 0, |
|
'valid_global_steps': 0, |
|
} |
|
|
|
|
|
|
|
print("begin to bulid up model...") |
|
|
|
device = select_device(logger, batch_size=cfg.TEST.BATCH_SIZE_PER_GPU* len(cfg.GPUS)) if not cfg.DEBUG \ |
|
else select_device(logger, 'cpu') |
|
|
|
|
|
model = get_net(cfg) |
|
print("finish build model") |
|
|
|
|
|
criterion = get_loss(cfg, device=device) |
|
|
|
|
|
|
|
|
|
model_dict = model.state_dict() |
|
checkpoint_file = args.weights |
|
logger.info("=> loading checkpoint '{}'".format(checkpoint_file)) |
|
checkpoint = torch.load(checkpoint_file) |
|
checkpoint_dict = checkpoint['state_dict'] |
|
|
|
model_dict.update(checkpoint_dict) |
|
model.load_state_dict(model_dict) |
|
logger.info("=> loaded checkpoint '{}' ".format(checkpoint_file)) |
|
|
|
model = model.to(device) |
|
model.gr = 1.0 |
|
model.nc = 1 |
|
print('bulid model finished') |
|
|
|
print("begin to load data") |
|
|
|
normalize = transforms.Normalize( |
|
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] |
|
) |
|
|
|
valid_dataset = eval('dataset.' + cfg.DATASET.DATASET)( |
|
cfg=cfg, |
|
is_train=False, |
|
inputsize=cfg.MODEL.IMAGE_SIZE, |
|
transform=transforms.Compose([ |
|
transforms.ToTensor(), |
|
normalize, |
|
]) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
valid_loader = DataLoaderX( |
|
valid_dataset, |
|
batch_size=cfg.TEST.BATCH_SIZE_PER_GPU * len(cfg.GPUS), |
|
shuffle=False, |
|
num_workers=cfg.WORKERS, |
|
pin_memory=False, |
|
collate_fn=dataset.AutoDriveDataset.collate_fn |
|
) |
|
print('load data finished') |
|
|
|
epoch = 0 |
|
da_segment_results,ll_segment_results,detect_results, total_loss,maps, times = validate( |
|
epoch,cfg, valid_loader, valid_dataset, model, criterion, |
|
final_output_dir, tb_log_dir, writer_dict, |
|
logger, device |
|
) |
|
fi = fitness(np.array(detect_results).reshape(1, -1)) |
|
msg = 'Test: Loss({loss:.3f})\n' \ |
|
'Driving area Segment: Acc({da_seg_acc:.3f}) IOU ({da_seg_iou:.3f}) mIOU({da_seg_miou:.3f})\n' \ |
|
'Lane line Segment: Acc({ll_seg_acc:.3f}) IOU ({ll_seg_iou:.3f}) mIOU({ll_seg_miou:.3f})\n' \ |
|
'Detect: P({p:.3f}) R({r:.3f}) [email protected]({map50:.3f}) [email protected]:0.95({map:.3f})\n'\ |
|
'Time: inference({t_inf:.4f}s/frame) nms({t_nms:.4f}s/frame)'.format( |
|
loss=total_loss, da_seg_acc=da_segment_results[0],da_seg_iou=da_segment_results[1],da_seg_miou=da_segment_results[2], |
|
ll_seg_acc=ll_segment_results[0],ll_seg_iou=ll_segment_results[1],ll_seg_miou=ll_segment_results[2], |
|
p=detect_results[0],r=detect_results[1],map50=detect_results[2],map=detect_results[3], |
|
t_inf=times[0], t_nms=times[1]) |
|
logger.info(msg) |
|
print("test finish") |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|