whisper-small-hi / README.md
Rishabh06's picture
Update README.md
7a16f9f verified
metadata
language:
  - hi
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper Small Hindi - Rishabh Mathur
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: hi
          split: test
          args: 'config: hi, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 35.90811802476686

Whisper Small Hi - Rishabh Mathur

This model is a fine-tuned version of openai/whisper-small on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3956
  • WER: 35.9081

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 390
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.7731 0.9708 27 0.5895 60.3386
0.4964 1.9775 55 0.4101 45.7155
0.2613 2.9843 83 0.3411 40.6360
0.2032 3.9910 111 0.3155 37.3949
0.1622 4.9978 139 0.3081 36.0648
0.1001 5.9685 166 0.3126 35.4418
0.0826 6.9753 194 0.3265 35.4762
0.0541 7.9820 222 0.3401 35.3348
0.0418 8.9888 250 0.3528 35.3921
0.035 9.9955 278 0.3668 35.4380
0.0245 10.9663 305 0.3783 35.6291
0.0212 11.9730 333 0.3880 36.0304
0.0172 12.9798 361 0.3942 35.8240
0.0159 13.9865 389 0.3956 35.9158
0.0159 14.0225 390 0.3956 35.9081

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.1.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1