Llams_3.1_8B_instruct_behaviour_cloning_extra_things_updated_grouped
This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1928
- Model Preparation Time: 0.0065
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: bitsandbytes
- _load_in_8bit: False
- _load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
- bnb_4bit_quant_storage: uint8
- load_in_4bit: True
- load_in_8bit: False
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time |
---|---|---|---|---|
0.0929 | 0.9996 | 1236 | 0.1423 | 0.0065 |
0.0689 | 2.0 | 2473 | 0.1724 | 0.0065 |
0.0588 | 2.9988 | 3708 | 0.1928 | 0.0065 |
Framework versions
- PEFT 0.4.0
- Transformers 4.44.0
- Pytorch 2.3.1+cu121
- Datasets 2.13.0
- Tokenizers 0.19.1
- Downloads last month
- 4
Model tree for RishuD7/Llams_3.1_8B_instruct_behaviour_cloning_extra_things_updated_grouped
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct