Edit model card

Whisper Medium Bambara Fieldwork

This model is a fine-tuned version of openai/whisper-medium on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 4.0725
  • Wer: 157.6004

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 13532
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6342 1.03 1000 2.5810 159.5293
0.2873 3.03 2000 2.9513 159.1140
0.1461 5.02 3000 3.6833 158.3941
0.049 7.02 4000 4.0725 157.6004
0.0218 9.01 5000 4.2531 158.3664
0.0071 11.0 6000 4.5944 157.9972
0.0057 12.04 7000 4.6659 161.4952
0.0061 14.03 8000 4.9162 161.0614
0.0042 16.03 9000 5.0205 158.9848
0.0007 18.02 10000 5.1463 159.1970
0.0015 20.01 11000 5.2150 159.0401
0.0001 22.01 12000 5.3008 159.5478
0.0001 24.0 13000 5.3800 159.0309

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.1+cu117
  • Datasets 2.8.0
  • Tokenizers 0.13.2
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results