metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: swinv2-tiny-patch4-window8-256-dmae-humeda-1
results: []
swinv2-tiny-patch4-window8-256-dmae-humeda-1
This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.3549
- Accuracy: 0.5
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 2 | 1.5476 | 0.3462 |
No log | 2.0 | 4 | 1.4060 | 0.4615 |
No log | 3.0 | 6 | 1.4222 | 0.4423 |
No log | 4.0 | 8 | 1.4011 | 0.4231 |
1.4158 | 5.0 | 10 | 1.3764 | 0.4615 |
1.4158 | 6.0 | 12 | 1.3549 | 0.5 |
1.4158 | 7.0 | 14 | 1.3302 | 0.5 |
1.4158 | 8.0 | 16 | 1.3073 | 0.5 |
1.4158 | 9.0 | 18 | 1.2923 | 0.5 |
1.2817 | 10.0 | 20 | 1.2863 | 0.5 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1