Edit model card

swinv2-tiny-patch4-window8-256-dmae-humeda-2

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7928
  • Accuracy: 0.7115

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 2 1.3469 0.5
No log 2.0 4 1.3200 0.4808
No log 3.0 6 1.3124 0.4808
No log 4.0 8 1.2178 0.5
1.1551 5.0 10 1.0957 0.5769
1.1551 6.0 12 1.0359 0.5769
1.1551 7.0 14 1.0103 0.5962
1.1551 8.0 16 0.9382 0.6538
1.1551 9.0 18 0.8748 0.6346
0.9827 10.0 20 0.8836 0.6154
0.9827 11.0 22 0.8574 0.6154
0.9827 12.0 24 0.8494 0.5962
0.9827 13.0 26 0.8226 0.6154
0.9827 14.0 28 0.8242 0.6346
0.8007 15.0 30 0.8304 0.6154
0.8007 16.0 32 0.8447 0.6538
0.8007 17.0 34 0.8228 0.6923
0.8007 18.0 36 0.7928 0.7115
0.8007 19.0 38 0.7822 0.6731
0.6882 20.0 40 0.7750 0.6538
0.6882 21.0 42 0.7726 0.6538
0.6882 22.0 44 0.7898 0.6731
0.6882 23.0 46 0.8021 0.6731
0.6882 24.0 48 0.7834 0.6923
0.6154 25.0 50 0.7634 0.6731
0.6154 26.0 52 0.7584 0.6923
0.6154 27.0 54 0.7773 0.6538
0.6154 28.0 56 0.7830 0.6538
0.6154 29.0 58 0.7719 0.6538
0.541 30.0 60 0.7603 0.6538
0.541 31.0 62 0.7497 0.6731
0.541 32.0 64 0.7381 0.7115
0.541 33.0 66 0.7275 0.6923
0.541 34.0 68 0.7277 0.6923
0.5163 35.0 70 0.7271 0.6923
0.5163 36.0 72 0.7274 0.6923
0.5163 37.0 74 0.7304 0.6923
0.5163 38.0 76 0.7329 0.6923
0.5163 39.0 78 0.7351 0.6923
0.5183 40.0 80 0.7356 0.6923

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
27.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-2

Finetuned
(46)
this model