Edit model card

swinv2-tiny-patch4-window8-256-dmae-humeda-DA

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9032
  • Accuracy: 0.7692

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.8421 4 1.6342 0.1346
No log 1.8947 9 1.5368 0.2692
1.5734 2.9474 14 1.3871 0.4808
1.5734 4.0 19 1.2443 0.5192
1.3253 4.8421 23 1.1185 0.5577
1.3253 5.8947 28 1.0374 0.5962
1.044 6.9474 33 0.9798 0.6346
1.044 8.0 38 0.9702 0.6731
0.8487 8.8421 42 0.9567 0.6538
0.8487 9.8947 47 0.9292 0.6538
0.7359 10.9474 52 0.9042 0.6923
0.7359 12.0 57 0.9032 0.7692
0.6592 12.8421 61 0.9060 0.6538
0.6592 13.8947 66 0.9208 0.6538
0.6257 14.9474 71 0.9272 0.6923
0.6257 16.0 76 1.0044 0.6731
0.5927 16.8421 80 0.9176 0.7308
0.5927 17.8947 85 0.9261 0.75
0.5255 18.9474 90 0.9058 0.6538
0.5255 20.0 95 0.9338 0.75
0.5255 20.8421 99 0.9103 0.6923
0.5098 21.8947 104 0.9329 0.75
0.5098 22.9474 109 0.9886 0.75
0.4347 24.0 114 0.9331 0.7308
0.4347 24.8421 118 1.0086 0.6923
0.4269 25.8947 123 1.0184 0.7308
0.4269 26.9474 128 0.9698 0.7115
0.42 28.0 133 0.9873 0.6923
0.42 28.8421 137 0.9996 0.6923
0.4239 29.8947 142 0.9858 0.6923
0.4239 30.9474 147 0.9964 0.7308
0.3713 32.0 152 1.0338 0.7115
0.3713 32.8421 156 1.0474 0.6923
0.4133 33.6842 160 1.0444 0.6923

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
26
Safetensors
Model size
27.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DA

Finetuned
(46)
this model