docuAI / README.md
Rohank's picture
End of training
0a2864f
metadata
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: docuAI
    results: []

docuAI

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6827
  • Answer: {'precision': 0.7172949002217295, 'recall': 0.799752781211372, 'f1': 0.7562828755113968, 'number': 809}
  • Header: {'precision': 0.33620689655172414, 'recall': 0.3277310924369748, 'f1': 0.33191489361702126, 'number': 119}
  • Question: {'precision': 0.7637931034482759, 'recall': 0.831924882629108, 'f1': 0.7964044943820225, 'number': 1065}
  • Overall Precision: 0.7218
  • Overall Recall: 0.7888
  • Overall F1: 0.7538
  • Overall Accuracy: 0.8097

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.7471 1.0 10 1.5418 {'precision': 0.027965284474445518, 'recall': 0.03584672435105068, 'f1': 0.0314192849404117, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.26978723404255317, 'recall': 0.2976525821596244, 'f1': 0.2830357142857143, 'number': 1065} 0.1564 0.1736 0.1646 0.4109
1.3886 2.0 20 1.2047 {'precision': 0.25207100591715975, 'recall': 0.26328800988875156, 'f1': 0.2575574365175332, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.4723969252271139, 'recall': 0.6347417840375587, 'f1': 0.5416666666666667, 'number': 1065} 0.3906 0.4461 0.4165 0.5948
1.0458 3.0 30 0.9213 {'precision': 0.4836471754212091, 'recall': 0.6032138442521632, 'f1': 0.5368536853685368, 'number': 809} {'precision': 0.05263157894736842, 'recall': 0.008403361344537815, 'f1': 0.014492753623188406, 'number': 119} {'precision': 0.6089795918367347, 'recall': 0.7004694835680751, 'f1': 0.651528384279476, 'number': 1065} 0.5482 0.6197 0.5817 0.7024
0.8024 4.0 40 0.7873 {'precision': 0.5814393939393939, 'recall': 0.7589616810877626, 'f1': 0.6584450402144773, 'number': 809} {'precision': 0.1044776119402985, 'recall': 0.058823529411764705, 'f1': 0.07526881720430108, 'number': 119} {'precision': 0.6488427773343974, 'recall': 0.7633802816901408, 'f1': 0.7014667817083693, 'number': 1065} 0.6035 0.7195 0.6564 0.7567
0.6593 5.0 50 0.7148 {'precision': 0.6419753086419753, 'recall': 0.7713226205191595, 'f1': 0.7007299270072992, 'number': 809} {'precision': 0.2602739726027397, 'recall': 0.15966386554621848, 'f1': 0.19791666666666666, 'number': 119} {'precision': 0.7365217391304347, 'recall': 0.7953051643192488, 'f1': 0.7647855530474039, 'number': 1065} 0.6788 0.7476 0.7116 0.7846
0.5564 6.0 60 0.6806 {'precision': 0.6945054945054945, 'recall': 0.7812113720642769, 'f1': 0.7353112274578244, 'number': 809} {'precision': 0.2647058823529412, 'recall': 0.226890756302521, 'f1': 0.24434389140271492, 'number': 119} {'precision': 0.7158067158067158, 'recall': 0.8206572769953052, 'f1': 0.7646544181977254, 'number': 1065} 0.6865 0.7692 0.7255 0.7947
0.4838 7.0 70 0.6697 {'precision': 0.6844396082698585, 'recall': 0.7775030902348579, 'f1': 0.7280092592592592, 'number': 809} {'precision': 0.2696629213483146, 'recall': 0.20168067226890757, 'f1': 0.23076923076923078, 'number': 119} {'precision': 0.738626964433416, 'recall': 0.8384976525821596, 'f1': 0.7854001759014952, 'number': 1065} 0.6973 0.7757 0.7344 0.8004
0.4342 8.0 80 0.6709 {'precision': 0.7062780269058296, 'recall': 0.7787391841779975, 'f1': 0.7407407407407407, 'number': 809} {'precision': 0.30097087378640774, 'recall': 0.2605042016806723, 'f1': 0.27927927927927926, 'number': 119} {'precision': 0.7415359207266722, 'recall': 0.8431924882629108, 'f1': 0.7891036906854131, 'number': 1065} 0.7067 0.7822 0.7426 0.8020
0.386 9.0 90 0.6592 {'precision': 0.7107258938244854, 'recall': 0.8108776266996292, 'f1': 0.7575057736720554, 'number': 809} {'precision': 0.2764227642276423, 'recall': 0.2857142857142857, 'f1': 0.2809917355371901, 'number': 119} {'precision': 0.75, 'recall': 0.8253521126760563, 'f1': 0.7858739383102369, 'number': 1065} 0.7074 0.7873 0.7452 0.8106
0.3572 10.0 100 0.6611 {'precision': 0.7080213903743315, 'recall': 0.8182941903584673, 'f1': 0.7591743119266056, 'number': 809} {'precision': 0.29906542056074764, 'recall': 0.2689075630252101, 'f1': 0.28318584070796454, 'number': 119} {'precision': 0.7532133676092545, 'recall': 0.8253521126760563, 'f1': 0.7876344086021505, 'number': 1065} 0.7121 0.7893 0.7487 0.8102
0.3264 11.0 110 0.6828 {'precision': 0.7325056433408578, 'recall': 0.8022249690976514, 'f1': 0.7657817109144542, 'number': 809} {'precision': 0.3, 'recall': 0.3025210084033613, 'f1': 0.301255230125523, 'number': 119} {'precision': 0.7525773195876289, 'recall': 0.8225352112676056, 'f1': 0.7860026917900403, 'number': 1065} 0.7194 0.7832 0.7499 0.8055
0.3132 12.0 120 0.6722 {'precision': 0.7123893805309734, 'recall': 0.796044499381953, 'f1': 0.7518972562755399, 'number': 809} {'precision': 0.3391304347826087, 'recall': 0.3277310924369748, 'f1': 0.3333333333333333, 'number': 119} {'precision': 0.7548605240912933, 'recall': 0.8384976525821596, 'f1': 0.7944839857651246, 'number': 1065} 0.7157 0.7908 0.7514 0.8082
0.293 13.0 130 0.6817 {'precision': 0.7109634551495017, 'recall': 0.7935723114956736, 'f1': 0.75, 'number': 809} {'precision': 0.3277310924369748, 'recall': 0.3277310924369748, 'f1': 0.3277310924369748, 'number': 119} {'precision': 0.7680776014109347, 'recall': 0.8178403755868544, 'f1': 0.7921782628467485, 'number': 1065} 0.7199 0.7787 0.7481 0.8078
0.282 14.0 140 0.6845 {'precision': 0.712707182320442, 'recall': 0.7972805933250927, 'f1': 0.7526254375729288, 'number': 809} {'precision': 0.3333333333333333, 'recall': 0.3277310924369748, 'f1': 0.3305084745762712, 'number': 119} {'precision': 0.768624014022787, 'recall': 0.8234741784037559, 'f1': 0.7951042611060744, 'number': 1065} 0.7217 0.7832 0.7512 0.8094
0.2728 15.0 150 0.6827 {'precision': 0.7172949002217295, 'recall': 0.799752781211372, 'f1': 0.7562828755113968, 'number': 809} {'precision': 0.33620689655172414, 'recall': 0.3277310924369748, 'f1': 0.33191489361702126, 'number': 119} {'precision': 0.7637931034482759, 'recall': 0.831924882629108, 'f1': 0.7964044943820225, 'number': 1065} 0.7218 0.7888 0.7538 0.8097

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3