metadata
library_name: transformers
language:
- hi
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Hi - jiobrain
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: hi
split: None
args: 'config: hi, split: test'
metrics:
- name: Wer
type: wer
value: 34.48742910353001
Whisper Small Hi - jiobrain
This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.5730
- Wer: 34.4874
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.003 | 9.7800 | 1000 | 0.4521 | 34.2123 |
0.0004 | 19.5599 | 2000 | 0.5207 | 34.3562 |
0.0001 | 29.3399 | 3000 | 0.5607 | 34.1404 |
0.0001 | 39.1198 | 4000 | 0.5730 | 34.4874 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1