CodeTrans model for program synthesis
Pretrained model on programming language lisp inspired DSL using the t5 large model architecture. It was first released in this repository.
Model description
This CodeTrans model is based on the t5-large
model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the program synthesis task for the lisp inspired DSL code.
Intended uses & limitations
The model could be used to generate lisp inspired DSL code given the human language description tasks.
How to use
Here is how to use this model to generate lisp inspired DSL code using Transformers SummarizationPipeline:
from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline
pipeline = SummarizationPipeline(
model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_large_program_synthese_multitask_finetune"),
tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_large_program_synthese_multitask_finetune", skip_special_tokens=True),
device=0
)
tokenized_code = "you are given an array of numbers a and a number b , compute the difference of elements in a and b"
pipeline([tokenized_code])
Run this example in colab notebook.
Training data
The supervised training tasks datasets can be downloaded on Link
Training procedure
Multi-task Pretraining
The model was trained on a single TPU Pod V3-8 for 500,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training.
Fine-tuning
This model was then fine-tuned on a single TPU Pod V2-8 for 2,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing lisp inspired DSL data.
Evaluation results
For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score):
Test results :
Language / Model | LISP |
---|---|
CodeTrans-ST-Small | 89.43 |
CodeTrans-ST-Base | 89.65 |
CodeTrans-TF-Small | 90.30 |
CodeTrans-TF-Base | 90.24 |
CodeTrans-TF-Large | 90.21 |
CodeTrans-MT-Small | 82.88 |
CodeTrans-MT-Base | 86.99 |
CodeTrans-MT-Large | 90.27 |
CodeTrans-MT-TF-Small | 90.31 |
CodeTrans-MT-TF-Base | 90.30 |
CodeTrans-MT-TF-Large | 90.17 |
State of the art | 85.80 |
Created by Ahmed Elnaggar | LinkedIn and Wei Ding | LinkedIn
- Downloads last month
- 7