layoutlm-funsd / README.md
Sailesh9999's picture
Training in progress, epoch 1
78d1fc9 verified
|
raw
history blame
9.34 kB
metadata
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: layoutlm-funsd
    results: []

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0844
  • Answer: {'precision': 0.3143100511073254, 'recall': 0.4561186650185414, 'f1': 0.3721633888048412, 'number': 809}
  • Header: {'precision': 0.275, 'recall': 0.18487394957983194, 'f1': 0.22110552763819097, 'number': 119}
  • Question: {'precision': 0.44804716285924834, 'recall': 0.5708920187793427, 'f1': 0.5020644095788603, 'number': 1065}
  • Overall Precision: 0.3826
  • Overall Recall: 0.5013
  • Overall F1: 0.4340
  • Overall Accuracy: 0.5793

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.7974 1.0 5 1.6082 {'precision': 0.015957446808510637, 'recall': 0.003708281829419036, 'f1': 0.006018054162487462, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.13218390804597702, 'recall': 0.0215962441314554, 'f1': 0.037126715092816794, 'number': 1065} 0.0718 0.0130 0.0221 0.2950
1.6031 2.0 10 1.4809 {'precision': 0.09702549575070822, 'recall': 0.16934487021013597, 'f1': 0.12336785231877535, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.2448499117127722, 'recall': 0.39061032863849765, 'f1': 0.301013024602026, 'number': 1065} 0.1778 0.2775 0.2167 0.3926
1.4415 3.0 15 1.3965 {'precision': 0.15503875968992248, 'recall': 0.32138442521631644, 'f1': 0.20917135961383748, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.25329341317365267, 'recall': 0.3971830985915493, 'f1': 0.3093235831809872, 'number': 1065} 0.2041 0.3427 0.2558 0.4162
1.3417 4.0 20 1.2882 {'precision': 0.1925233644859813, 'recall': 0.3819530284301607, 'f1': 0.25600662800331403, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.2921832884097035, 'recall': 0.5089201877934272, 'f1': 0.3712328767123288, 'number': 1065} 0.2457 0.4270 0.3120 0.4305
1.2673 5.0 25 1.2461 {'precision': 0.2402555910543131, 'recall': 0.4647713226205192, 'f1': 0.3167649536647009, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.3362183754993342, 'recall': 0.47417840375586856, 'f1': 0.39345539540319435, 'number': 1065} 0.2828 0.4420 0.3449 0.4621
1.1953 6.0 30 1.1667 {'precision': 0.2396469789545146, 'recall': 0.4363411619283066, 'f1': 0.30937773882559155, 'number': 809} {'precision': 0.1038961038961039, 'recall': 0.06722689075630252, 'f1': 0.08163265306122448, 'number': 119} {'precision': 0.34711246200607904, 'recall': 0.536150234741784, 'f1': 0.42140221402214023, 'number': 1065} 0.2917 0.4676 0.3593 0.5048
1.1257 7.0 35 1.1238 {'precision': 0.271211022480058, 'recall': 0.4622991347342398, 'f1': 0.34186471663619744, 'number': 809} {'precision': 0.17708333333333334, 'recall': 0.14285714285714285, 'f1': 0.15813953488372096, 'number': 119} {'precision': 0.38812154696132595, 'recall': 0.5276995305164319, 'f1': 0.4472741742936729, 'number': 1065} 0.3260 0.4782 0.3877 0.5539
1.0703 8.0 40 1.0882 {'precision': 0.2758340113913751, 'recall': 0.41903584672435107, 'f1': 0.33267909715407257, 'number': 809} {'precision': 0.1919191919191919, 'recall': 0.15966386554621848, 'f1': 0.17431192660550457, 'number': 119} {'precision': 0.4045307443365696, 'recall': 0.5868544600938967, 'f1': 0.47892720306513414, 'number': 1065} 0.3422 0.4932 0.4040 0.5809
1.0172 9.0 45 1.0768 {'precision': 0.277602523659306, 'recall': 0.43510506798516685, 'f1': 0.3389504092441021, 'number': 809} {'precision': 0.24096385542168675, 'recall': 0.16806722689075632, 'f1': 0.19801980198019803, 'number': 119} {'precision': 0.40967092008059103, 'recall': 0.5727699530516432, 'f1': 0.4776820673453407, 'number': 1065} 0.3458 0.4927 0.4064 0.5803
0.9713 10.0 50 1.0884 {'precision': 0.3041700735895339, 'recall': 0.45982694684796044, 'f1': 0.3661417322834645, 'number': 809} {'precision': 0.2631578947368421, 'recall': 0.16806722689075632, 'f1': 0.20512820512820512, 'number': 119} {'precision': 0.4506024096385542, 'recall': 0.5267605633802817, 'f1': 0.4857142857142857, 'number': 1065} 0.3746 0.4782 0.4201 0.5781
0.9434 11.0 55 1.1220 {'precision': 0.29082426127527217, 'recall': 0.4622991347342398, 'f1': 0.35704057279236273, 'number': 809} {'precision': 0.2727272727272727, 'recall': 0.17647058823529413, 'f1': 0.21428571428571427, 'number': 119} {'precision': 0.4404934687953556, 'recall': 0.5699530516431925, 'f1': 0.4969300040933278, 'number': 1065} 0.3656 0.5028 0.4233 0.5669
0.9288 12.0 60 1.0876 {'precision': 0.298372513562387, 'recall': 0.4079110012360939, 'f1': 0.34464751958224543, 'number': 809} {'precision': 0.23958333333333334, 'recall': 0.19327731092436976, 'f1': 0.21395348837209302, 'number': 119} {'precision': 0.4299933642999336, 'recall': 0.6084507042253521, 'f1': 0.5038880248833593, 'number': 1065} 0.3695 0.5023 0.4258 0.5784
0.9043 13.0 65 1.1185 {'precision': 0.31703204047217537, 'recall': 0.4647713226205192, 'f1': 0.3769423558897243, 'number': 809} {'precision': 0.2894736842105263, 'recall': 0.18487394957983194, 'f1': 0.22564102564102564, 'number': 119} {'precision': 0.4605263157894737, 'recall': 0.5258215962441315, 'f1': 0.49101271372205174, 'number': 1065} 0.3866 0.4807 0.4285 0.5679
0.8884 14.0 70 1.1097 {'precision': 0.31260364842454397, 'recall': 0.46600741656365885, 'f1': 0.37419354838709684, 'number': 809} {'precision': 0.29333333333333333, 'recall': 0.18487394957983194, 'f1': 0.2268041237113402, 'number': 119} {'precision': 0.4597791798107255, 'recall': 0.5474178403755868, 'f1': 0.4997856836690956, 'number': 1065} 0.3852 0.4927 0.4324 0.5710
0.8759 15.0 75 1.0844 {'precision': 0.3143100511073254, 'recall': 0.4561186650185414, 'f1': 0.3721633888048412, 'number': 809} {'precision': 0.275, 'recall': 0.18487394957983194, 'f1': 0.22110552763819097, 'number': 119} {'precision': 0.44804716285924834, 'recall': 0.5708920187793427, 'f1': 0.5020644095788603, 'number': 1065} 0.3826 0.5013 0.4340 0.5793

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3