fix: fix bibtex format for CodeRL
#5
by
zhuwenq
- opened
README.md
CHANGED
@@ -26,6 +26,7 @@ We validate the effectiveness of this checkpoint pretrained with simplified stra
|
|
26 |
|
27 |
This model can be easily loaded using the `T5ForConditionalGeneration` functionality:
|
28 |
|
|
|
29 |
```python
|
30 |
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
31 |
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codet5-large")
|
@@ -50,7 +51,7 @@ print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
|
|
50 |
year = {2021}
|
51 |
}
|
52 |
|
53 |
-
@article{CodeRL2022
|
54 |
author = {Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, Steven C.H. Hoi},
|
55 |
title = {CodeRL: Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning},
|
56 |
journal = {arXiv preprint},
|
|
|
26 |
|
27 |
This model can be easily loaded using the `T5ForConditionalGeneration` functionality:
|
28 |
|
29 |
+
|
30 |
```python
|
31 |
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
32 |
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codet5-large")
|
|
|
51 |
year = {2021}
|
52 |
}
|
53 |
|
54 |
+
@article{CodeRL2022,
|
55 |
author = {Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, Steven C.H. Hoi},
|
56 |
title = {CodeRL: Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning},
|
57 |
journal = {arXiv preprint},
|