File size: 16,536 Bytes
bef178b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
import random
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
import torchvision.transforms.functional as F
from torchvision.transforms import Normalize, Compose, RandomResizedCrop, InterpolationMode, ToTensor, Resize, \
CenterCrop, ColorJitter, Grayscale
import numbers
import torch
import ast
import math
from PIL import Image
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
from transformers.image_utils import ImageInput
from transformers.utils import TensorType
class XGenMMImageProcessor(BaseImageProcessor):
def __init__(
self,
do_resize: bool = True,
resize_mode: str = "squash",
interpolation_mode: str = "bicubic",
size: Union[Tuple[int, int], List[int]] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.do_resize = do_resize
self.resize_mode = resize_mode
self.interpolation_mode = interpolation_mode
self.size = size if size is not None else (378, 378)
self.image_mean = image_mean if image_mean is not None else [0.48145466, 0.4578275, 0.40821073]
self.image_std = image_std if image_std is not None else [0.26862954, 0.26130258, 0.27577711]
@classmethod
def resize(cls, image_size, resize_mode, interpolation='bicubic', fill_color=0):
interpolation_mode = InterpolationMode.BILINEAR if interpolation == 'bilinear' else InterpolationMode.BICUBIC
if resize_mode == 'longest':
transforms = [
ResizeKeepRatio(image_size, interpolation=interpolation_mode, longest=1),
CenterCropOrPad(image_size, fill=fill_color)
]
elif resize_mode == 'squash':
if isinstance(image_size, int):
image_size = (image_size, image_size)
transforms = [
Resize(image_size, interpolation=interpolation_mode),
]
else:
assert resize_mode == 'shortest'
if not isinstance(image_size, (tuple, list)):
image_size = (image_size, image_size)
if image_size[0] == image_size[1]:
# simple case, use torchvision built-in Resize w/ shortest edge mode (scalar size arg)
transforms = [
Resize(image_size[0], interpolation=interpolation_mode)
]
else:
# resize shortest edge to matching target dim for non-square target
transforms = [ResizeKeepRatio(image_size)]
transforms += [CenterCrop(image_size)]
return transforms
@classmethod
def convert_rgb(cls, image):
return image.convert("RGB")
def _preprocess(self,
images: ImageInput
) -> torch.Tensor:
transforms = self.resize(self.size, self.resize_mode, self.interpolation_mode)
transforms.extend([
self.convert_rgb,
ToTensor(),
Normalize(mean=self.image_mean, std=self.image_std)
])
composed_transforms = Compose(transforms)
images_tensor = composed_transforms(images)
return images_tensor
def preprocess(self,
images: ImageInput,
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs) -> BatchFeature:
if 'image_aspect_ratio' in kwargs:
image_aspect_ratio = kwargs['image_aspect_ratio']
else:
image_aspect_ratio = 'pad'
new_images = []
if image_aspect_ratio == 'pad':
for image in images:
image = self._preprocess(image)
new_images.append(image)
else:
if isinstance(self.size, (tuple, list)):
base_img_size = self.size[0]
else:
raise ValueError("size should be list or tuple")
for image in images:
image = process_anyres_image(image, self._preprocess, self.size,
[
[base_img_size,base_img_size*2],
[base_img_size*2,base_img_size],
[base_img_size*2,base_img_size*2],
[base_img_size*3,base_img_size],
[base_img_size,base_img_size*3]
])
new_images.append(image)
if all(x.shape == new_images[0].shape for x in new_images):
new_images = torch.stack(new_images, dim=0)
if image_aspect_ratio == 'pad':
new_images = BatchFeature(data={"pixel_values": new_images.unsqueeze(1).unsqueeze(0)}, tensor_type=return_tensors)
else:
new_images = BatchFeature(data={"pixel_values": new_images.unsqueeze(0)}, tensor_type=return_tensors)
return new_images
# def preprocess(self,
# images: ImageInput,
# return_tensors: Optional[Union[str, TensorType]] = None,
# **kwargs) -> BatchFeature:
# transforms = self.resize(self.size, self.resize_mode, self.interpolation_mode)
# transforms.extend([
# self.convert_rgb,
# ToTensor(),
# Normalize(mean=self.image_mean, std=self.image_std)
# ])
# composed_transforms = Compose(transforms)
# images_tensor = composed_transforms(images).unsqueeze(0).unsqueeze(1).unsqueeze(0)
# encoded_outputs = BatchFeature(data={"pixel_values": images_tensor}, tensor_type=return_tensors)
# return encoded_outputs
class ResizeKeepRatio:
""" Resize and Keep Ratio
Copy & paste from `timm`
"""
def __init__(
self,
size,
longest=0.,
interpolation=InterpolationMode.BICUBIC,
random_scale_prob=0.,
random_scale_range=(0.85, 1.05),
random_aspect_prob=0.,
random_aspect_range=(0.9, 1.11)
):
if isinstance(size, (list, tuple)):
self.size = tuple(size)
else:
self.size = (size, size)
self.interpolation = interpolation
self.longest = float(longest) # [0, 1] where 0 == shortest edge, 1 == longest
self.random_scale_prob = random_scale_prob
self.random_scale_range = random_scale_range
self.random_aspect_prob = random_aspect_prob
self.random_aspect_range = random_aspect_range
@staticmethod
def get_params(
img,
target_size,
longest,
random_scale_prob=0.,
random_scale_range=(0.85, 1.05),
random_aspect_prob=0.,
random_aspect_range=(0.9, 1.11)
):
"""Get parameters
"""
source_size = img.size[::-1] # h, w
h, w = source_size
target_h, target_w = target_size
ratio_h = h / target_h
ratio_w = w / target_w
ratio = max(ratio_h, ratio_w) * longest + min(ratio_h, ratio_w) * (1. - longest)
if random_scale_prob > 0 and random.random() < random_scale_prob:
ratio_factor = random.uniform(random_scale_range[0], random_scale_range[1])
ratio_factor = (ratio_factor, ratio_factor)
else:
ratio_factor = (1., 1.)
if random_aspect_prob > 0 and random.random() < random_aspect_prob:
aspect_factor = random.uniform(random_aspect_range[0], random_aspect_range[1])
ratio_factor = (ratio_factor[0] / aspect_factor, ratio_factor[1] * aspect_factor)
size = [round(x * f / ratio) for x, f in zip(source_size, ratio_factor)]
return size
def __call__(self, img):
"""
Args:
img (PIL Image): Image to be cropped and resized.
Returns:
PIL Image: Resized, padded to at least target size, possibly cropped to exactly target size
"""
size = self.get_params(
img, self.size, self.longest,
self.random_scale_prob, self.random_scale_range,
self.random_aspect_prob, self.random_aspect_range
)
img = F.resize(img, size, self.interpolation)
return img
def __repr__(self):
format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
format_string += f', interpolation={self.interpolation})'
format_string += f', longest={self.longest:.3f})'
return format_string
def _setup_size(size, error_msg):
if isinstance(size, numbers.Number):
return int(size), int(size)
if isinstance(size, Sequence) and len(size) == 1:
return size[0], size[0]
if len(size) != 2:
raise ValueError(error_msg)
return size
def center_crop_or_pad(img: torch.Tensor, output_size: List[int], fill=0) -> torch.Tensor:
"""Center crops and/or pads the given image.
If the image is torch Tensor, it is expected
to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
Args:
img (PIL Image or Tensor): Image to be cropped.
output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int,
it is used for both directions.
fill (int, Tuple[int]): Padding color
Returns:
PIL Image or Tensor: Cropped image.
"""
if isinstance(output_size, numbers.Number):
output_size = (int(output_size), int(output_size))
elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
output_size = (output_size[0], output_size[0])
_, image_height, image_width = F.get_dimensions(img)
crop_height, crop_width = output_size
if crop_width > image_width or crop_height > image_height:
padding_ltrb = [
(crop_width - image_width) // 2 if crop_width > image_width else 0,
(crop_height - image_height) // 2 if crop_height > image_height else 0,
(crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
(crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
]
img = F.pad(img, padding_ltrb, fill=fill)
_, image_height, image_width = F.get_dimensions(img)
if crop_width == image_width and crop_height == image_height:
return img
crop_top = int(round((image_height - crop_height) / 2.0))
crop_left = int(round((image_width - crop_width) / 2.0))
return F.crop(img, crop_top, crop_left, crop_height, crop_width)
class CenterCropOrPad(torch.nn.Module):
"""Crops the given image at the center.
If the image is torch Tensor, it is expected
to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
"""
def __init__(self, size, fill=0):
super().__init__()
self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
self.fill = fill
def forward(self, img):
"""
Args:
img (PIL Image or Tensor): Image to be cropped.
Returns:
PIL Image or Tensor: Cropped image.
"""
return center_crop_or_pad(img, self.size, fill=self.fill)
def __repr__(self) -> str:
return f"{self.__class__.__name__}(size={self.size})"
def process_anyres_image(image, processor, processor_size, grid_pinpoints):
"""
Process an image with variable resolutions.
Args:
image (PIL.Image.Image): The input image to be processed.
processor: The image processor object.
processor_size (tuple, list): The size of the image processor.
grid_pinpoints (str): A string representation of a list of possible resolutions.
Returns:
torch.Tensor: A tensor containing the processed image patches.
"""
# FIXME: determine grid_pinpoints from image sizes.
if type(grid_pinpoints) is list:
possible_resolutions = grid_pinpoints
else:
possible_resolutions = ast.literal_eval(grid_pinpoints)
best_resolution = select_best_resolution(image.size, possible_resolutions)
image_padded = resize_and_pad_image(image, best_resolution)
# processor_size = processor.transforms[0].size
patches = divide_to_patches(image_padded, processor_size[0])
image_original_resize = image.resize((processor_size[0], processor_size[0]))
image_patches = [image_original_resize] + patches
image_patches = [processor(image_patch)
for image_patch in image_patches]
return torch.stack(image_patches, dim=0)
def select_best_resolution(original_size, possible_resolutions):
"""
Selects the best resolution from a list of possible resolutions based on the original size.
Args:
original_size (tuple): The original size of the image in the format (width, height).
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
Returns:
tuple: The best fit resolution in the format (width, height).
"""
original_width, original_height = original_size
best_fit = None
max_effective_resolution = 0
min_wasted_resolution = float('inf')
for width, height in possible_resolutions:
scale = min(width / original_width, height / original_height)
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
wasted_resolution = (width * height) - effective_resolution
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
max_effective_resolution = effective_resolution
min_wasted_resolution = wasted_resolution
best_fit = (width, height)
return best_fit
def resize_and_pad_image(image, target_resolution):
"""
Resize and pad an image to a target resolution while maintaining aspect ratio.
Args:
image (PIL.Image.Image): The input image.
target_resolution (tuple): The target resolution (width, height) of the image.
Returns:
PIL.Image.Image: The resized and padded image.
"""
original_width, original_height = image.size
target_width, target_height = target_resolution
scale_w = target_width / original_width
scale_h = target_height / original_height
if scale_w < scale_h:
new_width = target_width
new_height = min(math.ceil(original_height * scale_w), target_height)
else:
new_height = target_height
new_width = min(math.ceil(original_width * scale_h), target_width)
# Resize the image
resized_image = image.resize((new_width, new_height))
new_image = Image.new('RGB', (target_width, target_height), (0, 0, 0))
paste_x = (target_width - new_width) // 2
paste_y = (target_height - new_height) // 2
new_image.paste(resized_image, (paste_x, paste_y))
return new_image
def divide_to_patches(image, patch_size):
"""
Divides an image into patches of a specified size.
Args:
image (PIL.Image.Image): The input image.
patch_size (int): The size of each patch.
Returns:
list: A list of PIL.Image.Image objects representing the patches.
"""
patches = []
width, height = image.size
for i in range(0, height, patch_size):
for j in range(0, width, patch_size):
box = (j, i, j + patch_size, i + patch_size)
patch = image.crop(box)
patches.append(patch)
return patches |