Salmamoori's picture
End of training
a75f770 verified
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - Language
  - toxic-comment
  - Bert
  - PyTorch
  - Trainer
  - F1Score
  - HuggingFaceHub
  - generated_from_trainer
metrics:
  - accuracy
  - recall
  - precision
  - f1
model-index:
  - name: Bert-finetuned-toxic-comment-classification-v2
    results: []

Bert-finetuned-toxic-comment-classification-v2

This model is a fine-tuned version of bert-base-uncased on the toxic-comment-classification dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1438
  • Accuracy: 0.965
  • Recall: 0.7143
  • Precision: 0.9375
  • F1: 0.8108

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Recall Precision F1
0.2792 1.0 100 0.2226 0.96 0.6190 1.0 0.7647
0.154 2.0 200 0.1438 0.965 0.7143 0.9375 0.8108
0.0488 3.0 300 0.2012 0.965 0.9524 0.7692 0.8511
0.015 4.0 400 0.2588 0.955 0.7143 0.8333 0.7692
0.0035 5.0 500 0.2444 0.965 0.7619 0.8889 0.8205
0.0001 6.0 600 0.2524 0.965 0.7619 0.8889 0.8205
0.0001 7.0 700 0.2580 0.965 0.7619 0.8889 0.8205
0.0001 8.0 800 0.2621 0.965 0.7619 0.8889 0.8205
0.0001 9.0 900 0.2646 0.965 0.7619 0.8889 0.8205
0.0001 10.0 1000 0.2654 0.965 0.7619 0.8889 0.8205

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1