metadata
license: mit
This model is the ONNX version of https://huggingface.co/SamLowe/roberta-base-go_emotions.
Full precision ONNX version
onnx/model.onnx
is the full precision ONNX version
- that has identical performance to the original transformers model
- and has the same model size (499MB)
- is faster than inference than normal Transformers, particularly for smaller batch sizes
- in my tests about 2x to 3x as fast for a batch size of 1 on a 8 core 11th gen i7 CPU using OnnxRuntime
Quaantized (INT8) ONNX version
onnx/model_quantized.onnx
is the int8 quantized version
- that is one quarter the size (125MB) of the full precision model (above)
- but delivers almost all of the accuracy
- is faster than inference
- about 2x as fast for a batch size of 1 on an 8 core 11th gen i7 CPU using ONNXRuntime vs the full precision model above
- which makes it circa 5x as fast as the full precision normal Transformers model (on the above mentioned CPU, for a batch of 1)
How to use
Using Optimum Library ONNX Classes
To follow.
Using ONNXRuntime
- Tokenization can be done before with the
tokenizers
library, - and then the fed into ONNXRuntime as the type of dict it uses,
- and then simply the postprocessing sigmoid is needed afterward on the model output (which comes as a numpy array) to create the embeddings.
from tokenizers import Tokenizer
import onnxruntime as ort
from os import cpu_count
import numpy as np # only used for the postprocessing sigmoid
sentences = ["hello world"] # for example a batch of 1
tokenizer = Tokenizer.from_pretrained("SamLowe/roberta-base-go_emotions")
# optional - set pad to only pad to longest in batch, not a fixed length. Without this, the model will run slower, esp for shorter input strings.
params = {**tokenizer.padding, "length": None}
tokenizer.enable_padding(**params)
tokens_obj = tokenizer.encode_batch(sentences)
def load_onnx_model(model_filepath):
_options = ort.SessionOptions()
_options.inter_op_num_threads, _options.intra_op_num_threads = cpu_count(), cpu_count()
_providers = ["CPUExecutionProvider"] # could use ort.get_available_providers()
return ort.InferenceSession(path_or_bytes=model_filepath, sess_options=_options, providers=_providers)
model = load_onnx_model("path_to_model_dot_onnx_or_model_quantized_dot_onnx")
output_names = [model.get_outputs()[0].name] # E.g. ["logits"]
input_feed_dict = {
"input_ids": [t.ids for t in tokens_obj],
"attention_mask": [t.attention_mask for t in tokens_obj]
}
def sigmoid(_outputs):
return 1.0 / (1.0 + np.exp(-_outputs))
model_output = model.run(output_names=output_names, input_feed=input_feed_dict)[0]
embeddings = sigmoid(model_output)
print(embeddings)
Example notebook: showing usage, accuracy & performance
Notebook with more details to follow.