SamLowe's picture
Update README.md
90ee0c1
|
raw
history blame
6.11 kB
metadata
language: en
tags:
  - text-classification
  - onnx
  - int8
  - roberta
  - emotions
  - multi-class-classification
  - multi-label-classification
  - optimum
datasets:
  - go_emotions
license: mit
inference: false
widget:
  - text: Thank goodness ONNX is available, it is lots faster!

This model is the ONNX version of https://huggingface.co/SamLowe/roberta-base-go_emotions.

Full precision ONNX version

onnx/model.onnx is the full precision ONNX version

  • that has identical accuracy/metrics to the original Transformers model
  • and has the same model size (499MB)
  • is faster in inference than normal Transformers, particularly for smaller batch sizes
    • in my tests about 2x to 3x as fast for a batch size of 1 on a 8 core 11th gen i7 CPU using ONNXRuntime

Metrics

Using a fixed threshold of 0.5 to convert the scores to binary predictions for each label:

  • Accuracy: 0.474
  • Precision: 0.575
  • Recall: 0.396
  • F1: 0.450

See more details in the SamLowe/roberta-base-go_emotions model card for the increases possible through selecting label-specific thresholds to maximise F1 scores, or another metric.

Quantized (INT8) ONNX version

onnx/model_quantized.onnx is the int8 quantized version

  • that is one quarter the size (125MB) of the full precision model (above)
  • but delivers almost all of the accuracy
  • is faster in inference than both the full precision ONNX above, and the normal Transformers model
    • about 2x as fast for a batch size of 1 on an 8 core 11th gen i7 CPU using ONNXRuntime vs the full precision model above
    • which makes it circa 5x as fast as the full precision normal Transformers model (on the above mentioned CPU, for a batch of 1)

Metrics for Quantized (INT8) Model

Using a fixed threshold of 0.5 to convert the scores to binary predictions for each label:

  • Accuracy: 0.475
  • Precision: 0.582
  • Recall: 0.398
  • F1: 0.447

Note how the metrics are almost identical to the full precision metrics above.

See more details in the SamLowe/roberta-base-go_emotions model card for the increases possible through selecting label-specific thresholds to maximise F1 scores, or another metric.

How to use

Using Optimum Library ONNX Classes

Optimum library has equivalents (starting ORT) for the main Transformers classes, so these models can be used with the familiar constructs. The only extra property needed is file_name on the model creation, which in the below example specifies the quantized (INT8) model.

sentences = ["ONNX is seriously fast for small batches. Impressive"]

from transformers import AutoTokenizer, pipeline
from optimum.onnxruntime import ORTModelForSequenceClassification

model_id = "SamLowe/roberta-base-go_emotions-onnx"
file_name = "onnx/model_quantized.onnx"

model = ORTModelForSequenceClassification.from_pretrained(model_id, file_name=file_name)
tokenizer = AutoTokenizer.from_pretrained(model_id)

onnx_classifier = pipeline(
    task="text-classification",
    model=model,
    tokenizer=tokenizer,
    top_k=None,
    function_to_apply="sigmoid",  # optional as is the default for the task
)

model_outputs = onnx_classifier(sentences)
# gives a list of outputs, each a list of dicts (one per label)

print(model_outputs)
# E.g.
# [[{'label': 'admiration', 'score': 0.9203393459320068},
#   {'label': 'approval', 'score': 0.0560273639857769},
#   {'label': 'neutral', 'score': 0.04265536740422249},
#   {'label': 'gratitude', 'score': 0.015126707963645458},
# ...

Using ONNXRuntime

  • Tokenization can be done before with the tokenizers library,
  • and then the fed into ONNXRuntime as the type of dict it uses,
  • and then simply the postprocessing sigmoid is needed afterward on the model output (which comes as a numpy array) to create the embeddings.
from tokenizers import Tokenizer
import onnxruntime as ort

from os import cpu_count
import numpy as np  # only used for the postprocessing sigmoid

sentences = ["hello world"]  # for example a batch of 1

# labels as (ordered) list - from the go_emotions dataset
labels = ['admiration', 'amusement', 'anger', 'annoyance', 'approval', 'caring', 'confusion', 'curiosity', 'desire', 'disappointment', 'disapproval', 'disgust', 'embarrassment', 'excitement', 'fear', 'gratitude', 'grief', 'joy', 'love', 'nervousness', 'optimism', 'pride', 'realization', 'relief', 'remorse', 'sadness', 'surprise', 'neutral']

tokenizer = Tokenizer.from_pretrained("SamLowe/roberta-base-go_emotions")

# Optional - set pad to only pad to longest in batch, not a fixed length.
# (without this, the model will run slower, esp for shorter input strings)
params = {**tokenizer.padding, "length": None}
tokenizer.enable_padding(**params)

tokens_obj = tokenizer.encode_batch(sentences)

def load_onnx_model(model_filepath):
    _options = ort.SessionOptions()
    _options.inter_op_num_threads, _options.intra_op_num_threads = cpu_count(), cpu_count()
    _providers = ["CPUExecutionProvider"]  # could use ort.get_available_providers()
    return ort.InferenceSession(path_or_bytes=model_filepath, sess_options=_options, providers=_providers)

model = load_onnx_model("path_to_model_dot_onnx_or_model_quantized_dot_onnx")
output_names = [model.get_outputs()[0].name]  # E.g. ["logits"]

input_feed_dict = {
  "input_ids": [t.ids for t in tokens_obj],
  "attention_mask": [t.attention_mask for t in tokens_obj]
}

logits = model.run(output_names=output_names, input_feed=input_feed_dict)[0]
# produces a numpy array, one row per input item, one col per label

def sigmoid(x):
  return 1.0 / (1.0 + np.exp(-x))

# Post-processing. Gets the scores per label in range.
# Auto done by Transformers' pipeline, but we must do it manually with ORT.
model_outputs = sigmoid(logits) 

# for example, just to show the top result per input item
for probas in model_outputs:
  top_result_index = np.argmax(probas)
  print(labels[top_result_index], "with score:", probas[top_result_index])

Example notebook: showing usage, accuracy & performance

Notebook with more details to follow.