Edit model card

INTENT

This is intent classification for enquiry of customer order service,

Features such as placing, Tracking and managment of orders, -
Handles payment issues such as making and refund of payment -
Options for delivery , address for shipping and also account management like editing, update account and delete account - -
Options for contacting human agent -

You can also sends complaints here -

model is a fine-tuned version of microsoft/deberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0084
  • Train Accuracy: 0.9987
  • Validation Loss: 0.0019
  • Validation Accuracy: 0.9995
  • Epoch: 1

Model description

Enter intent , you will get the label number depicting the intent

  • 'get_refund': 0,
  • 'change_order': 1,
  • 'contact_customer_service': 2,
  • 'recover_password': 3,
  • 'create_account': 4,
  • 'check_invoices': 5,
  • 'payment_issue': 6,
  • 'place_order': 7,
  • 'delete_account': 8,
  • 'set_up_shipping_address': 9,
  • 'delivery_options': 10,
  • 'track_order': 11,
  • 'change_shipping_address': 12,
  • 'track_refund': 13,
  • 'check_refund_policy': 14,
  • 'review': 15,
  • 'contact_human_agent': 16,
  • 'delivery_period': 17,
  • 'edit_account': 18,
  • 'registration_problems': 19,
  • 'get_invoice': 20,
  • 'switch_account': 21,
  • 'cancel_order': 22,
  • 'check_payment_methods': 23,
  • 'check_cancellation_fee': 24,
  • 'newsletter_subscription': 25,
  • 'complaint': 26

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2690, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
0.2113 0.9544 0.0056 0.9995 0
0.0084 0.9987 0.0019 0.9995 1

Framework versions

  • Transformers 4.35.2
  • TensorFlow 2.15.0
  • Datasets 2.16.0
  • Tokenizers 0.15.0
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Sarthak279/Intent

Finetuned
(48)
this model