|
--- |
|
license: apache-2.0 |
|
base_model: Salesforce/codet5-base |
|
tags: |
|
- code-generation |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
- bleu |
|
model-index: |
|
- name: codeT5-finetuned-cXg-nl-to-code |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# codeT5-finetuned-cXg-nl-to-code |
|
|
|
This model is a fine-tuned version of [Salesforce/codet5-base](https://huggingface.co/Salesforce/codet5-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8873 |
|
- Rouge1: 0.1077 |
|
- Rouge2: 0.0133 |
|
- Rougel: 0.1043 |
|
- Bleu: 3.0765 |
|
- Meteor: 0.1706 |
|
- Codebleu: 0.0498 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Bleu | Meteor | Codebleu | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 4 | 2.1149 | 0.0415 | 0.0010 | 0.0417 | 0.0629 | 0.0236 | 0.0177 | |
|
| No log | 2.0 | 8 | 1.5027 | 0.0719 | 0.0028 | 0.0709 | 0.0682 | 0.0383 | 0.0201 | |
|
| No log | 3.0 | 12 | 1.0964 | 0.0913 | 0.0106 | 0.0916 | 0.3613 | 0.1050 | 0.0267 | |
|
| No log | 4.0 | 16 | 0.9316 | 0.1012 | 0.012 | 0.0979 | 0.6845 | 0.1369 | 0.0317 | |
|
| No log | 5.0 | 20 | 0.8873 | 0.1058 | 0.012 | 0.1007 | 0.7454 | 0.1497 | 0.0338 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|