distilbert-NER / README.md
Saugatkafley's picture
Update README.md
70222c7 verified
metadata
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: distilbert-NER
    results: []
datasets:
  - conll2003
language:
  - en
pipeline_tag: token-classification

distilbert-NER

This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0649
  • Precision: 0.0
  • Recall: 0.0
  • F1: 0.0
  • Accuracy: 0.9838

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.91 200 0.0681 0.0 0.0 0.0 0.9805
No log 1.82 400 0.0599 0.0 0.0 0.0 0.9827
0.1171 2.73 600 0.0641 0.0 0.0 0.0 0.9834
0.1171 3.64 800 0.0652 0.0 0.0 0.0 0.9843
0.0177 4.55 1000 0.0649 0.0 0.0 0.0 0.9838

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2