Scrya's picture
Update README.md
2cb6cb6
metadata
language:
  - yue
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
model-index:
  - name: Whisper Large V2 - Cantonese - Augmented
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0
          type: mozilla-foundation/common_voice_11_0
          config: yue
          split: test
        metrics:
          - type: cer
            value: 6.213317142278891
            name: CER

Whisper Large V2 - Cantonese - Augmented

This model is a fine-tuned version of openai/whisper-large-v2 on the mozilla-foundation/common_voice_11_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1828
  • Cer: 6.2133

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

Training:

Evaluation:

Training procedure

Datasets were augmented on-the-fly using audiomentations via PitchShift and TimeStretch transformations at p=0.3.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
0.1126 1.21 200 0.1666 7.3103
0.0467 2.42 400 0.1610 6.9419
0.0217 3.63 600 0.1621 6.3874
0.008 4.85 800 0.1699 6.3064
0.0023 6.06 1000 0.1828 6.2133

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.8.1.dev0
  • Tokenizers 0.13.2