Sercan's picture
update model card README.md
1cca9cb
metadata
language:
  - tr
license: apache-2.0
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_11_0
  - generated_from_trainer
datasets:
  - common_voice_11_0
metrics:
  - wer
model-index:
  - name: wav2vec2-xls-r-300m-tr
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: MOZILLA-FOUNDATION/COMMON_VOICE_11_0 - TR
          type: common_voice_11_0
          config: tr
          split: test
          args: 'Config: tr, Training split: train+validation, Eval split: test'
        metrics:
          - name: Wer
            type: wer
            value: 0.2862633203284225

wav2vec2-xls-r-300m-tr

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_11_0 - TR dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3179
  • Wer: 0.2863
  • Cer: 0.0681

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
No log 0.71 400 1.7290 0.9804 0.4797
4.5435 1.42 800 0.4810 0.5774 0.1450
0.523 2.12 1200 0.3859 0.4812 0.1156
0.3449 2.83 1600 0.3492 0.4498 0.1095
0.2814 3.54 2000 0.3660 0.4466 0.1099
0.2814 4.25 2400 0.3766 0.4235 0.1043
0.2463 4.96 2800 0.3416 0.4119 0.1010
0.2296 5.66 3200 0.3322 0.4013 0.0979
0.2143 6.37 3600 0.3370 0.3956 0.0972
0.1955 7.08 4000 0.3401 0.4033 0.0998
0.1955 7.79 4400 0.3375 0.3889 0.0962
0.1845 8.5 4800 0.3455 0.3752 0.0923
0.1752 9.2 5200 0.3336 0.3718 0.0925
0.1705 9.91 5600 0.3145 0.3653 0.0892
0.1585 10.62 6000 0.3410 0.3737 0.0922
0.1585 11.33 6400 0.3296 0.3664 0.0899
0.1474 12.04 6800 0.3492 0.3590 0.0899
0.1485 12.74 7200 0.3176 0.3506 0.0867
0.137 13.45 7600 0.3532 0.3600 0.0890
0.1291 14.16 8000 0.3318 0.3571 0.0873
0.1291 14.87 8400 0.3353 0.3548 0.0883
0.1274 15.58 8800 0.3235 0.3396 0.0823
0.1198 16.28 9200 0.3259 0.3389 0.0832
0.1164 16.99 9600 0.3263 0.3411 0.0844
0.1119 17.7 10000 0.3254 0.3377 0.0824
0.1119 18.41 10400 0.3243 0.3331 0.0812
0.1054 19.12 10800 0.3223 0.3239 0.0790
0.1017 19.82 11200 0.3054 0.3190 0.0774
0.0964 20.53 11600 0.3278 0.3237 0.0785
0.0903 21.24 12000 0.3167 0.3177 0.0774
0.0903 21.95 12400 0.3331 0.3124 0.0766
0.0886 22.65 12800 0.3099 0.3089 0.0745
0.0836 23.36 13200 0.3171 0.3048 0.0731
0.0796 24.07 13600 0.3158 0.3041 0.0733
0.0739 24.78 14000 0.3203 0.3003 0.0721
0.0739 25.49 14400 0.3138 0.2974 0.0713
0.0742 26.19 14800 0.3197 0.2959 0.0711
0.07 26.9 15200 0.3232 0.2952 0.0703
0.0654 27.61 15600 0.3243 0.2939 0.0701
0.0631 28.32 16000 0.3213 0.2876 0.0688
0.0631 29.03 16400 0.3151 0.2880 0.0685
0.0607 29.73 16800 0.3184 0.2867 0.0681

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.8.1.dev0
  • Tokenizers 0.13.2