|
--- |
|
language: cs |
|
license: cc-by-4.0 |
|
--- |
|
|
|
# Small-E-Czech |
|
|
|
Small-E-Czech is an [Electra](https://arxiv.org/abs/2003.10555)-small model pretrained on a Czech web corpus created at [Seznam.cz](https://www.seznam.cz/). Like other pretrained models, it should be finetuned on a downstream task of interest before use. At Seznam.cz, it has helped improve [web search ranking](https://blog.seznam.cz/2021/02/vyhledavani-pomoci-vyznamovych-vektoru/), query typo correction or clickbait titles detection. We release it under [CC BY 4.0 license](https://creativecommons.org/licenses/by/4.0/) (i.e. allowing commercial use). |
|
|
|
### How to use the discriminator in transformers |
|
```python |
|
from transformers import ElectraForPreTraining, ElectraTokenizerFast |
|
import torch |
|
|
|
discriminator = ElectraForPreTraining.from_pretrained("Seznam/small-e-czech") |
|
tokenizer = ElectraTokenizerFast.from_pretrained("Seznam/small-e-czech") |
|
|
|
sentence = "Za hory, za doly, mé zlaté parohy" |
|
fake_sentence = "Za hory, za doly, kočka zlaté parohy" |
|
|
|
fake_sentence_tokens = ["[CLS]"] + tokenizer.tokenize(fake_sentence) + ["[SEP]"] |
|
fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") |
|
outputs = discriminator(fake_inputs) |
|
predictions = torch.nn.Sigmoid()(outputs[0]).cpu().detach().numpy() |
|
|
|
for token in fake_sentence_tokens: |
|
print("{:>7s}".format(token), end="") |
|
print() |
|
|
|
for prediction in predictions.squeeze(): |
|
print("{:7.1f}".format(prediction), end="") |
|
print() |
|
``` |
|
|
|
In the output we can see the probabilities of particular tokens not belonging in the sentence (i.e. having been faked by the generator) according to the discriminator: |
|
|
|
``` |
|
[CLS] za hory , za dol ##y , kočka zlaté paro ##hy [SEP] |
|
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.3 0.2 0.1 0.0 |
|
``` |
|
|
|
### Finetuning |
|
|
|
For instructions on how to finetune the model on a new task, see the official HuggingFace transformers [tutorial](https://huggingface.co/transformers/training.html). |