Mistral-7B-Instruct-v0.2-absa-MT-restaurants
This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0072
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- training_steps: 1200
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.8237 | 0.13 | 40 | 0.1383 |
0.0623 | 0.25 | 80 | 0.0213 |
0.0199 | 0.38 | 120 | 0.0176 |
0.0178 | 0.5 | 160 | 0.0153 |
0.0153 | 0.63 | 200 | 0.0141 |
0.0136 | 0.75 | 240 | 0.0127 |
0.0111 | 0.88 | 280 | 0.0121 |
0.0117 | 1.0 | 320 | 0.0123 |
0.0091 | 1.13 | 360 | 0.0117 |
0.0102 | 1.25 | 400 | 0.0107 |
0.0081 | 1.38 | 440 | 0.0106 |
0.0097 | 1.5 | 480 | 0.0100 |
0.0091 | 1.63 | 520 | 0.0092 |
0.0079 | 1.75 | 560 | 0.0096 |
0.0074 | 1.88 | 600 | 0.0089 |
0.0075 | 2.0 | 640 | 0.0092 |
0.0043 | 2.13 | 680 | 0.0088 |
0.0053 | 2.26 | 720 | 0.0092 |
0.0047 | 2.38 | 760 | 0.0084 |
0.0041 | 2.51 | 800 | 0.0082 |
0.005 | 2.63 | 840 | 0.0080 |
0.005 | 2.76 | 880 | 0.0072 |
0.0045 | 2.88 | 920 | 0.0069 |
0.0034 | 3.01 | 960 | 0.0071 |
0.0021 | 3.13 | 1000 | 0.0075 |
0.0021 | 3.26 | 1040 | 0.0075 |
0.0018 | 3.38 | 1080 | 0.0077 |
0.0019 | 3.51 | 1120 | 0.0073 |
0.0018 | 3.63 | 1160 | 0.0075 |
0.0021 | 3.76 | 1200 | 0.0072 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
Model tree for Shakhovak/Mistral-7B-Instruct-v0.2-absa-MT-restaurants
Base model
mistralai/Mistral-7B-Instruct-v0.2