SentenceTransformer based on cointegrated/rubert-tiny2
This is a sentence-transformers model finetuned from cointegrated/rubert-tiny2. It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: cointegrated/rubert-tiny2
- Maximum Sequence Length: 2048 tokens
- Output Dimensionality: 312 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Беговая дорожка Hasttings CT100',
'Вертикальный велотренажер Sole B94 (2023)',
'Беговая дорожка Koenigsmann ML в Москве',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 312]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
cv
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 1.0 |
cosine_accuracy_threshold | 0.7653 |
cosine_f1 | 1.0 |
cosine_f1_threshold | 0.7653 |
cosine_precision | 1.0 |
cosine_recall | 1.0 |
cosine_ap | 1.0 |
dot_accuracy | 1.0 |
dot_accuracy_threshold | 0.7653 |
dot_f1 | 1.0 |
dot_f1_threshold | 0.7653 |
dot_precision | 1.0 |
dot_recall | 1.0 |
dot_ap | 1.0 |
manhattan_accuracy | 1.0 |
manhattan_accuracy_threshold | 9.3309 |
manhattan_f1 | 1.0 |
manhattan_f1_threshold | 9.3309 |
manhattan_precision | 1.0 |
manhattan_recall | 1.0 |
manhattan_ap | 1.0 |
euclidean_accuracy | 1.0 |
euclidean_accuracy_threshold | 0.6849 |
euclidean_f1 | 1.0 |
euclidean_f1_threshold | 0.6849 |
euclidean_precision | 1.0 |
euclidean_recall | 1.0 |
euclidean_ap | 1.0 |
max_accuracy | 1.0 |
max_accuracy_threshold | 9.3309 |
max_f1 | 1.0 |
max_f1_threshold | 9.3309 |
max_precision | 1.0 |
max_recall | 1.0 |
max_ap | 1.0 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 13,690 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 8 tokens
- mean: 15.4 tokens
- max: 44 tokens
- min: 7 tokens
- mean: 15.39 tokens
- max: 32 tokens
- min: 0.0
- mean: 0.5
- max: 1.0
- Samples:
sentence1 sentence2 score Велотренажер аэродинамический Spirit Fitness AB900+ Air Bike в Москве
Баттерфляй / Задняя дельта Impulse ExoForm FE9715
0.0
Эллиптический тренажер Sports Art E835
Эллиптический тренажер Clear Fit AirElliptical AE 40
1.0
Мультистанция Nohrd SlimBeam
Сведение бедра UltraGym LF-510
0.0
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Evaluation Dataset
Unnamed Dataset
- Size: 28 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 28 samples:
sentence1 sentence2 score type string string float details - min: 8 tokens
- mean: 14.79 tokens
- max: 23 tokens
- min: 11 tokens
- mean: 16.21 tokens
- max: 22 tokens
- min: 0.0
- mean: 0.57
- max: 1.0
- Samples:
sentence1 sentence2 score Беговая дорожка Carbon Yukon
Кросстренер Octane Fitness Max Trainer MTX в Москве
0.0
Беговая дорожка Беговая дорожка DFC BOSS I T-B1 для реабилитации
Беговая дорожка Protrain N6J
1.0
Грузоблочный тренажер Precor C010ES - жим ногами/икроножные в Москве
Ягодичные мышцы Bronze Gym MNM-016A
1.0
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 10warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | cv_max_ap |
---|---|---|---|---|
0 | 0 | - | - | 0.6247 |
1.0 | 428 | - | 0.0121 | 0.9407 |
1.1682 | 500 | 0.0121 | - | - |
2.0 | 856 | - | 0.0105 | 0.9805 |
2.3364 | 1000 | 0.0037 | - | - |
3.0 | 1284 | - | 0.0085 | 0.9821 |
3.5047 | 1500 | 0.0028 | - | - |
4.0 | 1712 | - | 0.0073 | 0.9891 |
4.6729 | 2000 | 0.0025 | - | - |
5.0 | 2140 | - | 0.0065 | 0.9924 |
5.8411 | 2500 | 0.0021 | - | - |
6.0 | 2568 | - | 0.0053 | 0.9963 |
7.0 | 2996 | - | 0.0055 | 0.9963 |
7.0093 | 3000 | 0.0018 | - | - |
8.0 | 3424 | - | 0.0041 | 1.0 |
8.1776 | 3500 | 0.0015 | - | - |
9.0 | 3852 | - | 0.0040 | 1.0 |
9.3458 | 4000 | 0.0014 | - | - |
10.0 | 4280 | - | 0.0036 | 1.0 |
Framework Versions
- Python: 3.11.8
- Sentence Transformers: 3.1.0
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu118
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}
- Downloads last month
- 16
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Shakhovak/tiny_sent_transformer
Base model
cointegrated/rubert-tiny2Evaluation results
- Cosine Accuracy on cvself-reported1.000
- Cosine Accuracy Threshold on cvself-reported0.765
- Cosine F1 on cvself-reported1.000
- Cosine F1 Threshold on cvself-reported0.765
- Cosine Precision on cvself-reported1.000
- Cosine Recall on cvself-reported1.000
- Cosine Ap on cvself-reported1.000
- Dot Accuracy on cvself-reported1.000
- Dot Accuracy Threshold on cvself-reported0.765
- Dot F1 on cvself-reported1.000