Edit model card

SentenceTransformer based on cointegrated/rubert-tiny2

This is a sentence-transformers model finetuned from cointegrated/rubert-tiny2. It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: cointegrated/rubert-tiny2
  • Maximum Sequence Length: 2048 tokens
  • Output Dimensionality: 312 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Беговая дорожка Hasttings CT100 Главная Беговые дорожки Беговая дорожка Hasttings CT100',
    'Беговая дорожка AMMITY SPACE ATM 5000 Главная Беговые дорожки Бренды',
    'Беговая дорожка ProForm 910 Беговые дорожки ProForm ProForm 910',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 312]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 1.0
cosine_accuracy_threshold 0.7241
cosine_f1 1.0
cosine_f1_threshold 0.7241
cosine_precision 1.0
cosine_recall 1.0
cosine_ap 1.0
dot_accuracy 1.0
dot_accuracy_threshold 0.7241
dot_f1 1.0
dot_f1_threshold 0.7241
dot_precision 1.0
dot_recall 1.0
dot_ap 1.0
manhattan_accuracy 1.0
manhattan_accuracy_threshold 9.0554
manhattan_f1 1.0
manhattan_f1_threshold 9.0554
manhattan_precision 1.0
manhattan_recall 1.0
manhattan_ap 1.0
euclidean_accuracy 1.0
euclidean_accuracy_threshold 0.6519
euclidean_f1 1.0
euclidean_f1_threshold 0.6519
euclidean_precision 1.0
euclidean_recall 1.0
euclidean_ap 1.0
max_accuracy 1.0
max_accuracy_threshold 9.0554
max_f1 1.0
max_f1_threshold 9.0554
max_precision 1.0
max_recall 1.0
max_ap 1.0

Training Details

Training Dataset

Unnamed Dataset

  • Size: 13,690 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 14 tokens
    • mean: 29.13 tokens
    • max: 66 tokens
    • min: 13 tokens
    • mean: 29.18 tokens
    • max: 63 tokens
    • min: 0.0
    • mean: 0.51
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Велотренажер аэродинамический Spirit Fitness AB900+ Air Bike в Москве Кардиотренажеры Велотренажеры Spirit Fitness AB900+ Air Bike Велотренажер IZHIMIO СL 1500 Главная Велотренажеры Бренды 1.0
    Эллиптический тренажер Sports Art E835 Главная Эллиптические тренажеры Бренды Степпер Matrix C7XI в Москве Кардиотренажеры Степперы Matrix C7XI 0.0
    Мультистанция Nohrd SlimBeam nan Силовые тренажеры Мультистанции Эллиптический тренажер Koenigsmann JX-170EF в Москве Кардиотренажеры Эллиптические тренажеры Koenigsmann JX-170EF 0.0
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 28 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 28 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 15 tokens
    • mean: 27.18 tokens
    • max: 45 tokens
    • min: 16 tokens
    • mean: 28.0 tokens
    • max: 47 tokens
    • min: 0.0
    • mean: 0.61
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Беговая дорожка Carbon Yukon Беговые дорожки Carbon Carbon Yukon Беговая дорожка Hasttings LCT80 Беговые дорожки Hasttings Hasttings LCT80 1.0
    Беговая дорожка Беговая дорожка DFC BOSS I T-B1 для реабилитации Беговые дорожки DFC Беговая дорожка DFC BOSS I T-B1 для реабилитации Беговая дорожка EVO FITNESS Cosmo 5 Главная Беговые дорожки Бренды 1.0
    Грузоблочный тренажер Precor C010ES - жим ногами/икроножные в Москве Силовые тренажеры Грузоблочные Precor C010ES - жим ногами/икроножные Кроссовер Bronze Gym D-005 Главная Силовые тренажеры Кроссовер Bronze Gym D-005 1.0
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • num_train_epochs: 10
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss cv_max_ap
0 0 - - 0.7655
1.0 428 - 0.0056 1.0
1.1682 500 0.0078 - -
2.0 856 - 0.0015 1.0
2.3364 1000 0.0019 - -
3.0 1284 - 0.0011 1.0
3.5047 1500 0.0013 - -
4.0 1712 - 0.0007 1.0
4.6729 2000 0.001 - -
5.0 2140 - 0.0004 1.0
5.8411 2500 0.0008 - -
6.0 2568 - 0.0002 1.0
7.0 2996 - 0.0002 1.0
7.0093 3000 0.0007 - -
8.0 3424 - 0.0001 1.0
8.1776 3500 0.0006 - -
9.0 3852 - 0.0001 1.0
9.3458 4000 0.0005 - -
10.0 4280 - 0.0001 1.0

Framework Versions

  • Python: 3.11.8
  • Sentence Transformers: 3.1.0
  • Transformers: 4.44.2
  • PyTorch: 2.4.1+cu118
  • Accelerate: 0.34.2
  • Datasets: 3.0.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

ContrastiveLoss

@inproceedings{hadsell2006dimensionality,
    author={Hadsell, R. and Chopra, S. and LeCun, Y.},
    booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
    title={Dimensionality Reduction by Learning an Invariant Mapping},
    year={2006},
    volume={2},
    number={},
    pages={1735-1742},
    doi={10.1109/CVPR.2006.100}
}
Downloads last month
8
Safetensors
Model size
29.2M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Shakhovak/tiny_sent_transformer_v2

Finetuned
(37)
this model

Evaluation results