Edit model card

SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
order tracking
  • 'What is the delivery status for my order placed using phone number 123456789?'
  • 'I ordered the Cake Decorating Kit 4 days ago, can you provide the tracking information?'
  • 'I ordered the Cake Stands 2 days ago with order no 54321 how long will it take to deliver?'
general faq
  • 'How do the traditional hand-woven Banarasi sarees from HKV Benaras differ from those made by machine-driven industries?'
  • 'What are the key factors to consider when developing a personalized diet plan for weight loss?'
  • "Are there any scientific studies that support Green Tea's role in preventing Alzheimer's and Parkinson's diseases?"
product policy
  • 'How do you use the information collected through tracking tools like Google Analytics and cookies?'
  • 'How does bakeyy handle returns for items that were purchased with a thank you discount?'
  • 'What is the procedure for returning a product that was part of a special occasion promotion?'
product discoverability
  • 'What is the price of the organic honey?'
  • 'Variety of cookie boxes'
  • 'what apparells do you have from Drew House'
product faq
  • 'What is the price of the bestseller honey?'
  • 'Do you offer any bulk discounts on organic honey?'
  • 'Are the big plum cake boxes available in packs of 30?'

Evaluation

Metrics

Label Accuracy
all 0.84

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Shankhdhar/classifier_woog_firstbud_updated")
# Run inference
preds = model("cookie boxes with dividers")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 4 11.9760 28
Label Training Sample Count
general faq 24
order tracking 34
product discoverability 50
product faq 50
product policy 50

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (2, 2)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0005 1 0.2048 -
0.0235 50 0.2874 -
0.0470 100 0.126 -
0.0705 150 0.0388 -
0.0940 200 0.0786 -
0.1175 250 0.0049 -
0.1410 300 0.0048 -
0.1646 350 0.0018 -
0.1881 400 0.0011 -
0.2116 450 0.0004 -
0.2351 500 0.0006 -
0.2586 550 0.0005 -
0.2821 600 0.0012 -
0.3056 650 0.0004 -
0.3291 700 0.0003 -
0.3526 750 0.0002 -
0.3761 800 0.0002 -
0.3996 850 0.0002 -
0.4231 900 0.0002 -
0.4466 950 0.0008 -
0.4701 1000 0.0002 -
0.4937 1050 0.0003 -
0.5172 1100 0.0001 -
0.5407 1150 0.0002 -
0.5642 1200 0.0001 -
0.5877 1250 0.0001 -
0.6112 1300 0.0001 -
0.6347 1350 0.0004 -
0.6582 1400 0.0002 -
0.6817 1450 0.0001 -
0.7052 1500 0.0002 -
0.7287 1550 0.0001 -
0.7522 1600 0.0001 -
0.7757 1650 0.0001 -
0.7992 1700 0.0001 -
0.8228 1750 0.0001 -
0.8463 1800 0.0001 -
0.8698 1850 0.0001 -
0.8933 1900 0.0001 -
0.9168 1950 0.0001 -
0.9403 2000 0.0001 -
0.9638 2050 0.0001 -
0.9873 2100 0.0002 -
1.0108 2150 0.0001 -
1.0343 2200 0.0001 -
1.0578 2250 0.0001 -
1.0813 2300 0.0001 -
1.1048 2350 0.0001 -
1.1283 2400 0.0 -
1.1519 2450 0.0001 -
1.1754 2500 0.0 -
1.1989 2550 0.0001 -
1.2224 2600 0.0007 -
1.2459 2650 0.0001 -
1.2694 2700 0.0001 -
1.2929 2750 0.0001 -
1.3164 2800 0.0001 -
1.3399 2850 0.0001 -
1.3634 2900 0.0001 -
1.3869 2950 0.0001 -
1.4104 3000 0.0001 -
1.4339 3050 0.0001 -
1.4575 3100 0.0001 -
1.4810 3150 0.0001 -
1.5045 3200 0.0001 -
1.5280 3250 0.0001 -
1.5515 3300 0.0001 -
1.5750 3350 0.0001 -
1.5985 3400 0.0001 -
1.6220 3450 0.0001 -
1.6455 3500 0.0001 -
1.6690 3550 0.0001 -
1.6925 3600 0.0001 -
1.7160 3650 0.0 -
1.7395 3700 0.0001 -
1.7630 3750 0.0001 -
1.7866 3800 0.0 -
1.8101 3850 0.0001 -
1.8336 3900 0.0001 -
1.8571 3950 0.0 -
1.8806 4000 0.0001 -
1.9041 4050 0.0001 -
1.9276 4100 0.0001 -
1.9511 4150 0.0001 -
1.9746 4200 0.0001 -
1.9981 4250 0.0001 -

Framework Versions

  • Python: 3.10.13
  • SetFit: 1.0.3
  • Sentence Transformers: 3.0.1
  • Transformers: 4.39.0
  • PyTorch: 2.2.2+cu121
  • Datasets: 2.19.2
  • Tokenizers: 0.15.2

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
17
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Shankhdhar/classifier_woog_firstbud_updated

Finetuned
(247)
this model

Evaluation results