BERT
Collection
5 items
•
Updated
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 0.25 | 151 | 0.0468 | 0.9923 | 1.0 | 0.9717 | 0.9856 |
No log | 0.5 | 302 | 0.0497 | 0.9908 | 0.9840 | 0.9823 | 0.9832 |
No log | 0.75 | 453 | 0.0571 | 0.9918 | 1.0 | 0.9699 | 0.9847 |
No log | 1.0 | 604 | 0.0319 | 0.9961 | 1.0 | 0.9858 | 0.9929 |
0.0471 | 1.25 | 755 | 0.0353 | 0.9952 | 0.9982 | 0.9841 | 0.9911 |
0.0471 | 1.5 | 906 | 0.0346 | 0.9942 | 0.9929 | 0.9858 | 0.9893 |
0.0471 | 1.75 | 1057 | 0.0678 | 0.9899 | 0.9772 | 0.9858 | 0.9815 |
0.0471 | 2.0 | 1208 | 0.0380 | 0.9952 | 1.0 | 0.9823 | 0.9911 |
0.0156 | 2.25 | 1359 | 0.0362 | 0.9952 | 1.0 | 0.9823 | 0.9911 |
0.0156 | 2.5 | 1510 | 0.0388 | 0.9942 | 0.9946 | 0.9841 | 0.9893 |
0.0156 | 2.75 | 1661 | 0.0418 | 0.9952 | 1.0 | 0.9823 | 0.9911 |
0.0156 | 3.0 | 1812 | 0.0333 | 0.9952 | 0.9982 | 0.9841 | 0.9911 |
0.0121 | 3.24 | 1963 | 0.0326 | 0.9952 | 0.9982 | 0.9841 | 0.9911 |
0.0121 | 3.49 | 2114 | 0.0309 | 0.9957 | 0.9982 | 0.9858 | 0.9920 |
0.0121 | 3.74 | 2265 | 0.0311 | 0.9952 | 0.9982 | 0.9841 | 0.9911 |
0.0121 | 3.99 | 2416 | 0.0344 | 0.9952 | 0.9982 | 0.9841 | 0.9911 |
0.0084 | 4.24 | 2567 | 0.0334 | 0.9952 | 0.9982 | 0.9841 | 0.9911 |
0.0084 | 4.49 | 2718 | 0.0327 | 0.9952 | 0.9982 | 0.9841 | 0.9911 |
0.0084 | 4.74 | 2869 | 0.0336 | 0.9952 | 0.9982 | 0.9841 | 0.9911 |
0.0084 | 4.99 | 3020 | 0.0341 | 0.9952 | 0.9982 | 0.9841 | 0.9911 |
Base model
google-bert/bert-base-uncased