mdeberta-v3-base-conll2003-en
This model is a fine-tuned version of microsoft/mdeberta-v3-base on the eriktks/conll2003 dataset (English split of the CONLL 2003). It achieves the following results on the evaluation set:
- Loss: 0.0342
- Precision: 0.9566
- Recall: 0.9650
- F1: 0.9608
- Accuracy: 0.9929
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 439 | 0.0509 | 0.9303 | 0.9456 | 0.9379 | 0.9890 |
0.1482 | 2.0 | 878 | 0.0359 | 0.9501 | 0.9583 | 0.9542 | 0.9918 |
0.0335 | 3.0 | 1317 | 0.0338 | 0.9530 | 0.9615 | 0.9572 | 0.9924 |
0.0191 | 4.0 | 1756 | 0.0346 | 0.9538 | 0.9635 | 0.9586 | 0.9926 |
0.0137 | 5.0 | 2195 | 0.0342 | 0.9566 | 0.9650 | 0.9608 | 0.9929 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
- Downloads last month
- 201
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for ShkalikovOleh/mdeberta-v3-base-conll2003-en
Base model
microsoft/mdeberta-v3-baseDataset used to train ShkalikovOleh/mdeberta-v3-base-conll2003-en
Evaluation results
- Precision on eriktks/conll2003validation set self-reported0.957
- Recall on eriktks/conll2003validation set self-reported0.965
- F1 on eriktks/conll2003validation set self-reported0.961
- Accuracy on eriktks/conll2003validation set self-reported0.993