Edit model card

mdeberta-v3-base-conll2003-en

This model is a fine-tuned version of microsoft/mdeberta-v3-base on the eriktks/conll2003 dataset (English split of the CONLL 2003). It achieves the following results on the evaluation set:

  • Loss: 0.0342
  • Precision: 0.9566
  • Recall: 0.9650
  • F1: 0.9608
  • Accuracy: 0.9929

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 439 0.0509 0.9303 0.9456 0.9379 0.9890
0.1482 2.0 878 0.0359 0.9501 0.9583 0.9542 0.9918
0.0335 3.0 1317 0.0338 0.9530 0.9615 0.9572 0.9924
0.0191 4.0 1756 0.0346 0.9538 0.9635 0.9586 0.9926
0.0137 5.0 2195 0.0342 0.9566 0.9650 0.9608 0.9929

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
201
Safetensors
Model size
278M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ShkalikovOleh/mdeberta-v3-base-conll2003-en

Finetuned
(204)
this model

Dataset used to train ShkalikovOleh/mdeberta-v3-base-conll2003-en

Evaluation results